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Note: natural logarithms are used throughout.

1. Intrinsic limitations of learning. In our analysis of regression with quadratic loss, we have
focused on the ERM algorithm and developed high-probability bounds on its excess loss. In
this problem, we will see that there are certain intrinsic limitations any learning algorithm
will face even in the realizable case when Y = f(X) (with probability one) and the function
f is a member of the chosen hypothesis class F.

Let µ be the marginal probability distribution of X, and for each f ∈ F let Y f = f(X). Let
Pf denote the joint distribution of (X,Y f ). That is, under Pf we have

Pf (A×B) =

∫
A
µ(dx)1{f(x)∈B}

for all measurable sets A ⊂ X and all B ⊂ R. Consider a learning algorithm An that receives
a sequence of i.i.d. training samples Zfi = (Xi, Y

f
i ), 1 ≤ i ≤ n, drawn from Pf , where f ∈ F

is unknown. Consider also the following random subset of F:

Vn(f) :=
{
h ∈ F : h(Xi) = f(Xi), 1 ≤ i ≤ n

}
.

This set, called the version space, consists of all functions h ∈ F that agree with the unknown
target function f on the training data. Let Dn(f) denote the diameter of the version space
in L2(µ) norm:

Dn(f) := sup
h,h′∈Vn(f)

‖h− h′‖L2(µ) ≡ sup
h,h′∈Vn(f)

(∫
X

∣∣h(x)− h′(x)
∣∣2 µ(dx)

)1/2

.

Note that Dn(f) is a random variable, since it depends on the training data. Our goal is to
prove that, no matter how sophisticated An is, it cannot attain better performance than a
constant multiple of D2

n(f).

(a) Suppose that An is the ERM algorithm: upon receiving the training data Zn = (Z1, . . . , Zn)
with Zi = (Xi, Yi), 1 ≤ i ≤ n, it outputs

f̂n = arg min
f∈F

1

n

n∑
i=1

(Yi − f(Xi))
2.
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Prove that if Zn are i.i.d. samples from Pf∗ for some f∗ ∈ F, then

L(f̂n) ≡
∫
X

(
f̂n(x)− f∗(x)

)2
µ(dx) ≤ D2

n(f∗).

(b) Now we will prove the following converse result: for an arbitrary learning algorithm An,
there exists at least one f ∈ F, such that

Pn
f

(
L(f̃n) ≥ D2

n(f)

16

)
≥ 1

2
, (1)

where f̃n = An

(
Zf,n

)
is the output of An given training data Zn = Zf,n drawn i.i.d.

from Pf . We will prove this in several steps.

i. Given f ∈ F, consider the version space Vn(f) and let h0,f , h1,f ∈ Vn(f) be such that
‖h0,f − h1,f‖L2(µ) = Dn(f). Let ε be a Bernoulli(1/2) random variable independent
of Xn, and define the random function

hf := (1− ε)h0,f + εh1,f .

That is, if ε = 0, then hf = h0,f ; if ε = 1, then hf = h1,f . Prove that, for any
realization of ε, Dn(f) = Dn(hf ).

ii. Prove that, for any realization of ε,

sup
f∈F

Pn
f

(∥∥∥An(Zn,f )− f
∥∥∥
L2(µ)

≥ Dn(f)

4

)
≥ sup

f∈F
Pn
f

(∥∥∥An(Zn,hf )− hf
∥∥∥
L2(µ)

≥ Dn(f)

4

)
.

(2)

iii. Let Πn denote the quantity on the right-hand side of (2). Note that Πn is a random
variable that depends on ε. Prove that

EεΠn ≥
1

2
sup
f∈F

(
µn(A0,f ) + µn(A1,f )

)
, (3)

where, for b ∈ {0, 1}, we have defined the event

Ab,f :=

{∥∥∥An(Zn,hb,f )− hb,f
∥∥∥
L2(µ)

≥ Dn(f)

4

}
.

iv. Prove that the union of the events A0,f and A1,f occurs with µ-probability one, and
conclude from this and from (3) that EεΠn ≥ 1/2.

Hint: Use the fact ‖h0,f − h1,f‖L2(µ) = Dn(f), and that both h0,f and h1,f are
in the version space Vn, and therefore the function output by the learning algorithm
An upon seeing the training data

(X1, h0,f (X1)), . . . , (Xn, h0,f (Xn))

is the same as the function output by An upon seeing the training data

(X1, h1,f (X1)), . . . , (Xn, h1,f (Xn))

with the same i.i.d. input sequence X1, . . . , Xn ∼ µ.
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v. Finally, use all of the above to prove that there exists at least one f ∈ F, such that
(1) holds true.

The moral of the story is: even if there is no noise in the data, the best performance of
any learning algorithm is controlled by the richness of the function class F. In particular,
if F is very rich, the version space is likely to be large (as measured by the L2(µ) norm)
because there will be many functions that can match the target function on a given sample.
This limitation is there even if we design our algorithm with full knowledge that the target
function f is in our hypothesis class, and even if we know the marginal distribution µ of X
ahead of time.

2. Amplifying weak learning algorithms. Let F be a class of functions from some space Z
into [0, 1]. Let a learning algorithm A be given with the following property: for any ε > 0,
there exists n(ε) ∈ N, such that, for any probability distribution P on Z,

E[L(A(Zn))] ≤ inf
f∈F

L(f) + ε

for all n ≥ n(ε). Here, A(Zn) is the (random) element of F returned by A upon receiving an
n-tuple Zn = (Z1, . . . , Zn) of i.i.d. samples from P , and L(f) := EP [f(Z)].

(a) Prove that, for any distribution P and any δ ∈ [0, 1],

P

{
L(A(Zn)) > inf

f∈F
L(f) + ε

}
≤ δ, if n ≥ n(εδ).

(b) Let Zn(1), . . . , Zn(k) be a collection of k independent n-tuples Zn(1), . . . , Zn(k) of i.i.d.
draws from P . For each j ∈ [k], let f̂j = A(Zn(j)) — that is, we run the algorithm A
independently on each of the k training sets. Prove that, if n ≥ n(εη) for some η ∈ [0, 1],
then

P

{
min
1≤j≤k

L(f̂j) > inf
f∈F

L(f) + ε

}
≤ ηk.

(c) Use the result of Part (b) to show that one can use A to design another learning algorithm
Ã with the following property: for any distribution P on Z,

P

{
L(Ã(Zn)) > inf

f∈F
L(f) + ε

}
≤ δ

with

n = n(ε/4)
⌈
log2(2/δ)

⌉
+

⌈
8

ε2

(
log(4/δ) + log

⌈
log2(2/δ)

⌉)⌉
.

Hint: Split the sample Zn into k + 1 disjoint subsamples, where the first k subsamples
each have size n(ε/4). Run A independently on each of these first k subsamples to
generate f̂1, . . . , f̂k ∈ F. Now use the remaining subsample to select a suitable hypothesis
among {f̂1, . . . , f̂k}.

(d) In your own words, explain the conceptual idea behind the result of part (c).
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