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Maxim Raginsky

April 15, 2021

Homework 4

Assigned April 15; due April 27, 2021

Note: natural logarithms are used throughout.

1. Intrinsic limitations of learning. In our analysis of regression with quadratic loss, we have
focused on the ERM algorithm and developed high-probability bounds on its excess loss. In
this problem, we will see that there are certain intrinsic limitations any learning algorithm
will face even in the realizable case when Y = f(X) (with probability one) and the function
f is a member of the chosen hypothesis class F.

Let 4 be the marginal probability distribution of X, and for each f € F let Y/ = f(X). Let
P denote the joint distribution of (X, YY). That is, under P/ we have

PiAxB) = [ wdo)lseen)

for all measurable sets A C X and all B C R. Consider a learning algorithm A,, that receives
a sequence of i.i.d. training samples Zif = (XZ-,Yif)7 1 <i<mn, drawn from Py, where f € F
is unknown. Consider also the following random subset of F:

Vo(f) i={heF :h(X;)=f(X;), 1 <i<n}.

This set, called the version space, consists of all functions h € F that agree with the unknown
target function f on the training data. Let D, (f) denote the diameter of the version space
in L%(p) norm:
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Note that D, (f) is a random variable, since it depends on the training data. Our goal is to

prove that, no matter how sophisticated A, is, it cannot attain better performance than a

constant multiple of D2 (f).

(a) Suppose that A, is the ERM algorithm: upon receiving the training data Z" = (Z1, ..., Z,)
with Z; = (X;,Y;), 1 < i < n, it outputs
n

fn = argmin l Z(Yi - f(Xz))Z

n
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Prove that if Z™ are i.i.d. samples from Py« for some f* € F, then

~

LE) = [ (R - @) utds) < D).

(b) Now we will prove the following converse result: for an arbitrary learning algorithm A,,,
there exists at least one f € F, such that

~ 2
P} <L(fn) > Dléf)) = (1)

where fn = A, (Zf’”> is the output of A, given training data Z" = Z/" drawn i.i.d.

from Py. We will prove this in several steps.

i.

ii.

iii.

iv.

Given f € J, consider the version space V,,(f) and let hg f, k1t € Vi (f) be such that
1ho,f — P1,sllL2(u) = Dn(f). Let € be a Bernoulli(1/2) random variable independent
of X™, and define the random function

hy = (1-— E)ho,f +ehyy.

That is, if ¢ = 0, then hy = hgy; if € = 1, then hy = hy ;. Prove that, for any
realization of &, D, (f) = Dy(hy).
Prove that, for any realization of ¢,

sup P <HAH(Z”’f) — f’

sup Dn(f)) > sup P (Hfln(vahf) — hf‘

> >
L2 () 4 feF L2 () 4

(2)

Let II,, denote the quantity on the right-hand side of (2). Note that II,, is a random
variable that depends on . Prove that

1
E.II, > o sup (4" (Ao p) + p"(Avy)) 3)
fex

where, for b € {0,1}, we have defined the event

Appi= {H.An(Z"»hb,f) _ hb,f‘ Dy (f) } '

>
L2p) — 4
Prove that the union of the events Ag y and A s occurs with p-probability one, and

conclude from this and from (3) that E.II,, > 1/2.

Hint: Use the fact [|ho s — h1fllp2() = Dn(f), and that both hg s and hyy are
in the version space V,,, and therefore the function output by the learning algorithm
A, upon seeing the training data

(X1,ho,¢(X1))s -, (X, hop(Xn))

is the same as the function output by A, upon seeing the training data

(X1, p (X)), - oo (Xy b p (X))

with the same i.i.d. input sequence Xi,..., X, ~ u.
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v. Finally, use all of the above to prove that there exists at least one f € &F, such that
(1) holds true.

The moral of the story is: even if there is no noise in the data, the best performance of
any learning algorithm is controlled by the richness of the function class F. In particular,
if F is very rich, the version space is likely to be large (as measured by the L?(x) norm)
because there will be many functions that can match the target function on a given sample.
This limitation is there even if we design our algorithm with full knowledge that the target
function f is in our hypothesis class, and even if we know the marginal distribution u of X
ahead of time.

. Amplifying weak learning algorithms. Let F be a class of functions from some space Z
into [0,1]. Let a learning algorithm A be given with the following property: for any £ > 0,
there exists n(e) € N, such that, for any probability distribution P on Z,

E[L(A(Z")] < inf L(f) + ¢

for all n > n(e). Here, A(Z™) is the (random) element of F returned by A upon receiving an

n-tuple Z" = (Z,...,Zy) of i.i.d. samples from P, and L(f) := Ep[f(Z2)].

(a) Prove that, for any distribution P and any 0 € [0, 1],
P {L(A(Z”)) > }ngL(f) + e} <4, if n > n(ed).
€

(b) Let Z"(1),...,Z" (k) be a collection of k independent n-tuples Z"(1),...,Z" (k) of i.i.d.
draws from P. For each j € [k], let f; = A(Z"(j)) — that is, we run the algorithm A
independently on each of the k training sets. Prove that, if n > n(en) for some n € [0, 1],
then

i ) > i < k.
p {fgn;gkfl(fg) > inf L(f) +6} <n

(¢) Use the result of Part (b) to show that one can use A to design another learning algorithm
A with the following property: for any distribution P on Z,

P {L(A(Z”)) > }relgL(f) + a} <6

with
n =n(e/4) [logy(2/6)] + Li (log(4/(5) + log [logQ(Z/(Sﬂ)-‘ .

Hint: Split the sample Z™ into k + 1 disjoint subsamples, where the first k subsamples
each have size n/gz—:/ll). Run A independently on each of these first k subsamples to
generate f1,..., fr € F. Now use the remaining subsample to select a suitable hypothesis
among {f1,..., fx}

(d) In your own words, explain the conceptual idea behind the result of part (c).



