ECE 543: Statistical Learning Theory

Maxim Raginsky

April 15, 2021

Homework 4

Assigned April 15; due April 27, 2021
Note: natural logarithms are used throughout.

1. Intrinsic limitations of learning. In our analysis of regression with quadratic loss, we have focused on the ERM algorithm and developed high-probability bounds on its excess loss. In this problem, we will see that there are certain intrinsic limitations any learning algorithm will face even in the realizable case when $Y=f(X)$ (with probability one) and the function f is a member of the chosen hypothesis class \mathcal{F}.
Let μ be the marginal probability distribution of X, and for each $f \in \mathcal{F}$ let $Y^{f}=f(X)$. Let \mathbf{P}_{f} denote the joint distribution of $\left(X, Y^{f}\right)$. That is, under \mathbf{P}^{f} we have

$$
\mathbf{P}_{f}(A \times B)=\int_{A} \mu(\mathrm{~d} x) \mathbf{1}_{\{f(x) \in B\}}
$$

for all measurable sets $A \subset \mathrm{X}$ and all $B \subset \mathbb{R}$. Consider a learning algorithm \mathcal{A}_{n} that receives a sequence of i.i.d. training samples $Z_{i}^{f}=\left(X_{i}, Y_{i}^{f}\right), 1 \leq i \leq n$, drawn from \mathbf{P}_{f}, where $f \in \mathcal{F}$ is unknown. Consider also the following random subset of \mathcal{F} :

$$
\mathcal{V}_{n}(f):=\left\{h \in \mathcal{F}: h\left(X_{i}\right)=f\left(X_{i}\right), 1 \leq i \leq n\right\} .
$$

This set, called the version space, consists of all functions $h \in \mathcal{F}$ that agree with the unknown target function f on the training data. Let $D_{n}(f)$ denote the diameter of the version space in $L^{2}(\mu)$ norm:

$$
D_{n}(f):=\sup _{h, h^{\prime} \in \mathcal{V}_{n}(f)}\left\|h-h^{\prime}\right\|_{L^{2}(\mu)} \equiv \sup _{h, h^{\prime} \in \mathcal{V}_{n}(f)}\left(\int_{\mathbf{X}}\left|h(x)-h^{\prime}(x)\right|^{2} \mu(\mathrm{~d} x)\right)^{1 / 2}
$$

Note that $D_{n}(f)$ is a random variable, since it depends on the training data. Our goal is to prove that, no matter how sophisticated \mathcal{A}_{n} is, it cannot attain better performance than a constant multiple of $D_{n}^{2}(f)$.
(a) Suppose that \mathcal{A}_{n} is the ERM algorithm: upon receiving the training data $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right)$ with $Z_{i}=\left(X_{i}, Y_{i}\right), 1 \leq i \leq n$, it outputs

$$
\widehat{f}_{n}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f\left(X_{i}\right)\right)^{2} .
$$

Prove that if Z^{n} are i.i.d. samples from $\mathbf{P}_{f^{*}}$ for some $f^{*} \in \mathcal{F}$, then

$$
L\left(\widehat{f}_{n}\right) \equiv \int_{\mathbf{X}}\left(\widehat{f}_{n}(x)-f^{*}(x)\right)^{2} \mu(\mathrm{~d} x) \leq D_{n}^{2}\left(f^{*}\right)
$$

(b) Now we will prove the following converse result: for an arbitrary learning algorithm \mathcal{A}_{n}, there exists at least one $f \in \mathcal{F}$, such that

$$
\begin{equation*}
\mathbf{P}_{f}^{n}\left(L\left(\tilde{f}_{n}\right) \geq \frac{D_{n}^{2}(f)}{16}\right) \geq \frac{1}{2}, \tag{1}
\end{equation*}
$$

where $\tilde{f}_{n}=\mathcal{A}_{n}\left(Z^{f, n}\right)$ is the output of \mathcal{A}_{n} given training data $Z^{n}=Z^{f, n}$ drawn i.i.d. from \mathbf{P}_{f}. We will prove this in several steps.
i. Given $f \in \mathcal{F}$, consider the version space $\mathcal{V}_{n}(f)$ and let $h_{0, f}, h_{1, f} \in \mathcal{V}_{n}(f)$ be such that $\left\|h_{0, f}-h_{1, f}\right\|_{L^{2}(\mu)}=D_{n}(f)$. Let ε be a Bernoulli(1/2) random variable independent of X^{n}, and define the random function

$$
h_{f}:=(1-\varepsilon) h_{0, f}+\varepsilon h_{1, f} .
$$

That is, if $\varepsilon=0$, then $h_{f}=h_{0, f}$; if $\varepsilon=1$, then $h_{f}=h_{1, f}$. Prove that, for any realization of $\varepsilon, D_{n}(f)=D_{n}\left(h_{f}\right)$.
ii. Prove that, for any realization of ε,

$$
\begin{equation*}
\sup _{f \in \mathcal{F}} \mathbf{P}_{f}^{n}\left(\left\|\mathcal{A}_{n}\left(Z^{n, f}\right)-f\right\|_{L^{2}(\mu)} \geq \frac{D_{n}(f)}{4}\right) \geq \sup _{f \in \mathcal{F}} \mathbf{P}_{f}^{n}\left(\left\|\mathcal{A}_{n}\left(Z^{n, h_{f}}\right)-h_{f}\right\|_{L^{2}(\mu)} \geq \frac{D_{n}(f)}{4}\right) . \tag{2}
\end{equation*}
$$

iii. Let Π_{n} denote the quantity on the right-hand side of (2). Note that Π_{n} is a random variable that depends on ε. Prove that

$$
\begin{equation*}
\mathbf{E}_{\varepsilon} \Pi_{n} \geq \frac{1}{2} \sup _{f \in \mathcal{F}}\left(\mu^{n}\left(A_{0, f}\right)+\mu^{n}\left(A_{1, f}\right)\right) \tag{3}
\end{equation*}
$$

where, for $b \in\{0,1\}$, we have defined the event

$$
A_{b, f}:=\left\{\left\|\mathcal{A}_{n}\left(Z^{n, h_{b, f}}\right)-h_{b, f}\right\|_{L^{2}(\mu)} \geq \frac{D_{n}(f)}{4}\right\} .
$$

iv. Prove that the union of the events $A_{0, f}$ and $A_{1, f}$ occurs with μ-probability one, and conclude from this and from (3) that $\mathbf{E}_{\varepsilon} \Pi_{n} \geq 1 / 2$.

Hint: Use the fact $\left\|h_{0, f}-h_{1, f}\right\|_{L^{2}(\mu)}=D_{n}(f)$, and that both $h_{0, f}$ and $h_{1, f}$ are in the version space \mathcal{V}_{n}, and therefore the function output by the learning algorithm \mathcal{A}_{n} upon seeing the training data

$$
\left(X_{1}, h_{0, f}\left(X_{1}\right)\right), \ldots,\left(X_{n}, h_{0, f}\left(X_{n}\right)\right)
$$

is the same as the function output by \mathcal{A}_{n} upon seeing the training data

$$
\left(X_{1}, h_{1, f}\left(X_{1}\right)\right), \ldots,\left(X_{n}, h_{1, f}\left(X_{n}\right)\right)
$$

with the same i.i.d. input sequence $X_{1}, \ldots, X_{n} \sim \mu$.
v. Finally, use all of the above to prove that there exists at least one $f \in \mathcal{F}$, such that (1) holds true.

The moral of the story is: even if there is no noise in the data, the best performance of any learning algorithm is controlled by the richness of the function class \mathcal{F}. In particular, if \mathcal{F} is very rich, the version space is likely to be large (as measured by the $L^{2}(\mu)$ norm) because there will be many functions that can match the target function on a given sample. This limitation is there even if we design our algorithm with full knowledge that the target function f is in our hypothesis class, and even if we know the marginal distribution μ of X ahead of time.
2. Amplifying weak learning algorithms. Let \mathcal{F} be a class of functions from some space Z into $[0,1]$. Let a learning algorithm A be given with the following property: for any $\varepsilon>0$, there exists $n(\varepsilon) \in \mathbb{N}$, such that, for any probability distribution P on Z,

$$
\mathbf{E}\left[L\left(A\left(Z^{n}\right)\right)\right] \leq \inf _{f \in \mathcal{F}} L(f)+\varepsilon
$$

for all $n \geq n(\varepsilon)$. Here, $A\left(Z^{n}\right)$ is the (random) element of \mathcal{F} returned by A upon receiving an n-tuple $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right)$ of i.i.d. samples from P, and $L(f):=\mathbf{E}_{P}[f(Z)]$.
(a) Prove that, for any distribution P and any $\delta \in[0,1]$,

$$
\mathbf{P}\left\{L\left(A\left(Z^{n}\right)\right)>\inf _{f \in \mathcal{F}} L(f)+\varepsilon\right\} \leq \delta, \quad \text { if } n \geq n(\varepsilon \delta)
$$

(b) Let $Z^{n}(1), \ldots, Z^{n}(k)$ be a collection of k independent n-tuples $Z^{n}(1), \ldots, Z^{n}(k)$ of i.i.d. draws from P. For each $j \in[k]$, let $\widehat{f}_{j}=A\left(Z^{n}(j)\right)$ - that is, we run the algorithm A independently on each of the k training sets. Prove that, if $n \geq n(\varepsilon \eta)$ for some $\eta \in[0,1]$, then

$$
\mathbf{P}\left\{\min _{1 \leq j \leq k} L\left(\widehat{f}_{j}\right)>\inf _{f \in \mathcal{F}} L(f)+\varepsilon\right\} \leq \eta^{k} .
$$

(c) Use the result of Part (b) to show that one can use A to design another learning algorithm \tilde{A} with the following property: for any distribution P on Z,

$$
\mathbf{P}\left\{L\left(\tilde{A}\left(Z^{n}\right)\right)>\inf _{f \in \mathcal{F}} L(f)+\varepsilon\right\} \leq \delta
$$

with

$$
n=n(\varepsilon / 4)\left\lceil\log _{2}(2 / \delta)\right\rceil+\left\lceil\frac{8}{\varepsilon^{2}}\left(\log (4 / \delta)+\log \left\lceil\log _{2}(2 / \delta)\right\rceil\right)\right\rceil .
$$

Hint: Split the sample Z^{n} into $k+1$ disjoint subsamples, where the first k subsamples each have size $n(\varepsilon / 4)$. Run A independently on each of these first k subsamples to generate $\widehat{f}_{1}, \ldots, \widehat{f_{k}} \in \mathcal{F}$. Now use the remaining subsample to select a suitable hypothesis among $\left\{\widehat{f}_{1}, \ldots, \widehat{f}_{k}\right\}$.
(d) In your own words, explain the conceptual idea behind the result of part (c).

