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Homework 3

Assigned March 25; due April 6, 2021

Note: natural logarithms are used throughout.

1. Fast rates in binary classification. In this problem, you will prove that the excess risk of
ERM for binary classification can, in certain cases, be as low as O(1/n), in contrast to the
usual O(1/

√
n) behavior (here n is the size of the training set). For simplicity, we will only

consider the case when the class F of candidate classifiers f : X→ {0, 1} is a finite set.

Thus, let (X,Y ) ∈ X × {0, 1} be a random couple with distribution P = PXY , and let
(X1, Y1), . . . , (Xn, Yn) be n i.i.d. samples from P . Consider forming the usual empirical esti-
mate of the loss L(f) = P(f(X) 6= Y ) of every classifier f ∈ F:

Ln(f) =
1

n

n∑
i=1

1{f(Xi)6=Yi},

so that the ERM solution is

f̂n = arg min
f∈F

Ln(f) ≡ arg min
f∈F

1

n

n∑
i=1

1{f(Xi) 6=Yi}.

(a) Prove that, for any f ∈ F,

L(f) ≤ Ln(f) +

√
2L(f) log(1/δ)

n
+

2 log(1/δ)

3n

with probability at least 1− δ.
Hint: You may need the following version of Bernstein’s inequality — if U1, . . . , Un are
n i.i.d. Bernoulli(p) random variables, then

P

(
1

n

n∑
i=1

Ui < p− ε

)
≤ exp

(
− nε2

2p+ 2ε/3

)
.

(b) Use the result from part (a) to show that, for any f ∈ F,

L(f) ≤ Ln(f) +

√
2Ln(f) log(1/δ)

n
+

4 log(1/δ)

n
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with probability at least 1−δ. Use this to prove that if the ERM solution classifies every
training example correctly, i.e., if Ln(f̂n) = 0, then

L(f̂n) ≤ 4 log(|F|/δ)
n

, with probability at least 1− δ.

(In particular, this bound holds when the relationship between X and Y is deterministic,
Y = f(X), and the function f happens to lie in F.)

Hint: You may need the fact that, for any three nonnegative numbers a, b, c, a ≤ b+c
√
a

implies a ≤ b+ c2 + c
√
b.

2. VC dimension of combined classifiers using hard thresholding. Let G denote the set
of interval classifiers g : R→ {1,−1}. Each g ∈ G has the form g(x) = sgn((x− a)(b− x)) for
a ≤ b ∈ R, where sgn(u) = 1{u≥0} − 1{u<0}.

(a) What is the VC dimension, V (G), and what is the resulting upper bound on the maximum
Rademacher complexity for a sample of size n: Rn(G(xn)) for samples {x1, . . . , xn} ⊂ R,
for n ≥ 1 (obtained from the finite class lemma, Sauer-Shelah lemma, and

(
n
≤d
)
≤

(n+ 1)d) ?

(b) Let G1 be the set of classifiers of the form g(x) = sgn
(∑N

i=1 cigi(x)
)
, where N ≥ 1,

gi ∈ G for i ∈ [N ], and (c1, . . . , cN ) is a probability vector. Thus, g can be the result
of comparing a convex combination of arbitrarily many simple interval classifiers to the
threshold 0. In short, G1 = sgn(conv(G)). Identify the VC dimension of G1 and the
Rademacher average for n sample points, Rn(G1(x

n)) (with notation as in part (a)).

3. Transformation of Mercer kernels. Let A � B denote Hadamard (i.e., elementwise)
multiplication for two vectors or matrices of the same dimension. For example, (A�B)ij :=
AijBij for all i, j.

(a) Suppose X and Y are two mean zero random vectors with values in Rd. Denote their
respective covariance matrices by ΣX = E[XXT ] and ΣY = E[Y Y T ]. Suppose X and Y
are independent of each other. Express the covariance matrix of X � Y in terms of ΣX

and ΣY .

(b) Show that the product of two Mercer kernels for the same domain X is a Mercer kernel.

Hint: A symmetric real matrix is positive semidefinite (PSD) if and only if it is the
covariance matrix for some mean zero random vector.

4. Half-space classifiers and support vector machines (SVM)

Consider the concept learning problem (X = Rd,Y = {±1},P,G) with 0-1 loss, where P is a
set of probability distributions P on Z = X×{±1}, and G consists of all half-space classifiers
of the form gw,b(x) = sgn(〈w, x〉 + b), where w ∈ Rd and b ∈ R. The generalization loss is
defined by LP (w, b) = P{Y 6= sgn(〈w,X〉+ b)}.

(a) Explain why this problem is PAC learnable. That is, describe a PAC learning algorithm
and give a performance bound demonstrating PAC learnability.

2



Hint: The set of classifiers considered is a Dudley class. The bound you give must
depend on d. Below we find a bound that does not depend on d in the realizable case,
under a restriction on the width of the margin.

(b) Given x ∈ Rd and a classifier (w, b) with w 6= 0, let π(x) denote the projection of x onto
the hyperplane defined by 〈w, x〉 + b = 0. Express π(x) and the distance, ‖x − π(x)‖,
between x and the hyperplane in terms of x,w, and b.
Hint: Since w is normal to the hyperplane, π(x) is the point in the hyperplance of the
form π(x) = x− cw for some constant c.

(c) Given a data set Zn = ((X1, Y1), . . . , (Xn, Yn)) and a classifier (w, b) with w 6= 0, let the
margin, Mi, of the ith sample point be defined by Mi := Yi(〈w,Xi〉+ b)/‖w‖. Thus, Mi

is the signed distance of Xi from the hyperplane defined by 〈w, x〉+ b = 0, with the sign
being positive if Yi = sgn(〈w, xi〉+ b) and negative otherwise. Define the margin for the
whole data set by M := mini∈[n]Mi. Suppose that M > 0 for some choice of (w, b). A
key idea of SVMs is to find (w, b) to maximize M , with the hope that it will lead to a
better classifier for fresh samples. Show that:

max
(w,b)

M = max

{
1

‖w‖
: (w, b) subject to Yi(〈w,Xi〉+ b) ≥ 1 for i ∈ [n]

}
(1)

Hint: M for a given (w, b) is not changed if (w, b) is multiplied through by a positive
scalar.

Remark: The right-hand side of (1) represents an optimization problem that is equivalent
to the quadratic optimization problem (2) below.

(d) (Bound not depending on d, realizable case with lower bound on relative margin) Suppose
CK > 0 and λ > 0. Let P denote the set of all probability distributions P on Z = X×{±1}
such that: P{

√
1 + ‖X‖2 ≤ CK} = 1, and there exists a classifier (w, b) (depending on

P ) such that ‖w‖2 + b2 ≤ λ2 and P{Y (〈w,X〉+ b) ≥ 1} = 1. These assumptions ensure
that iid samples generated by P satisfy the following with probability one: ‖Xi‖ ≤ CK
for each i, and there exists (w, b) for the data points with margin M at least 1/λ. Thus,
the ratio of the margin to maxi ‖Xi‖ is greater than or equal to 1

λCK
. Of course, just

because the data samples can be separated by a particular hyperplane doesn’t necessarily

mean that the hyperplane will classify fresh sample points well. Show that if ̂(wn, bn) is
the particular ERM classifier given by

̂(wn, bn) = arg min
{
‖w‖2 : (w, b) subject to Yi(〈w,Xi〉+ b) ≥ 1 for i ∈ [n]

}
, (2)

then with probability at least 1− δ,

LP ( ̂(wn, bn)) ≤ 4λCk√
n

+

√
log(1δ )

2n
. (3)

The bound (3) does not depend on the dimension, d, of the feature space.

Hint: Bring in a Mercer kernel K, and use the ramp penalty function with unit scale
parameter: ϕ(x) = min{1, (1 + x)+}.
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