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Homework 2, v2

Assigned March 4; due March 16, 2021

Note: natural logarithms are used throughout.

1. Uniform deviations and Rademacher averages. Let F be a class of functions f : Z →
[0, 1]. Given a distribution P over Z and an i.i.d. sample Zn from P , consider the uniform
deviation

∆n(Zn) = ‖Pn − P‖F = sup
f∈F
|Pn(f)− P (f)|

and the Rademacher average

Rn(F(Zn)) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Zi)

∣∣∣∣∣
]

where ε = (ε1, . . . , εn) is a vector of n i.i.d. Rademacher random variables independent of Zn.
Prove that, for any t > 0,

P
(

∆n(Zn)− 2Rn(F(Zn)) ≥ E[∆n(Zn)− 2Rn(F(Zn))] + t
)
≤ e−2nt2/25

and

P
(

∆n(Zn)− 2Rn(F(Zn)) ≥ t
)
≤ e−2nt2/25.

2. A simple covering number bound on Rademacher averages. Consider an arbitrary
space Z. The sup norm of any f : Z→ R is defined as

‖f‖∞ := sup
z∈Z
|f(z)|.

Let F be a class of real-valued functions on Z. Given an ε > 0, we say that a finite set of
functions {f1, . . . , fk} (not necessarily in F) is an ε-net for F (w.r.t. the sup norm) if for any
f ∈ F there exists at least one j ∈ {1, . . . , k} such that

‖f − fj‖∞ ≡ sup
z∈Z
|f(z)− fj(z)| ≤ ε.
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The ε-covering number of F w.r.t. the sup norm, denoted by N∞(F, ε), is the cardinality of
a minimal ε-net of F. If F does not admit an ε-net, then we set N∞(F, ε) = +∞.

(a) Suppose that all the functions in F are uniformly bounded, i.e., there exists some L > 0,
such that ‖f‖∞ ≤ L for all f ∈ F. Prove that

Rn(F) ≤ inf
ε>0

(
ε+ 2L

√
logN∞(F, ε)

n

)
.

[The logarithm of the covering number is called the ε-entropy of F and denoted by H∞(F, ε).]

(b) Let

Z =

z = (z(1), . . . , z(d)) ∈ Rd : ‖z‖1 =
d∑
j=1

|z(j)| ≤ 1


and let F consist of all functions of the form f(z) = fw(z) = 〈w, z〉 for all w ∈ Rd with
‖w‖∞ = max1≤j≤d |w(j)| ≤ 1. Prove that

N∞(F, ε) ≤
(

2

ε

)d
,

and then use this fact to prove that

Rn(F) = O

(√
d log n

n

)
.

(c) Suppose that F is such that H∞(F, ε) ≤ Cε−1/α for some constants C > 0 and α > 0.
(For example, if F is the class of all differentiable functions f : [0, 1] → [0, 1] with |f ′| ≤ 1,
then the above bound holds with α = 1.) Use the result of part (a) to prove that

Rn(F) ≤ Cn−
α

2α+1

for some constant C > 0.

3. An alternative to ERM. Searching for an empirical risk minimizer in an infinite function
class F may not always be feasible. Let’s consider the following alternative procedure that
reduces to searching over a finite subclass of F. We will be looking at a binary classification
problem, so let F be a class of functions f : X→ {0, 1}, where X is some feature space. Given
a training sample {(Xi, Yi)}ni=1 from an unknown probability distribution P on X×{0, 1}, we
carry out the following two-step procedure:

• Pick some m < n. Let Bm be the set of all binary strings in {0, 1}m of the form

bm(f) = (b1(f), . . . , bm(f)) = (f(X1), . . . , f(Xm)) (1)

for some f ∈ F. For each b ∈ Bm, pick one f ∈ F such that (1) holds. Let F̂m denote
the (finite) set of all such f ’s. Note that this is a random set, since it depends on the
sample (X1, . . . , Xm).
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• Compute

f̂n = arg min
f∈F̂m

1

n−m

n∑
i=m+1

1{f(Xi)6=Yi}.

This will be our actual classifier.

What we have done is split the original training sample into two subsamples, used the first
subsample to extract a finite subclass of F, and then performed ERM over this subclass on
the second subsample. We will now analyze the classification error of f̂n.

(a) Let
f̃m = arg min

f∈F̂m
L(f)

be the best classifier in F̂m. Note that this is a random object, since it depends on the random
set F̂m. Prove that

L(f̂n)− L(f̃m) ≤ 8

√
log |Sm(F)|
n−m

+

√
2 log(2/δ)

n−m
(2)

with probability at least 1− δ/2, where Sm(F) is the mth shatter coefficient of F.
Hint: Use the fact that f̂n is a solution of an ERM problem over the second subsample, add
and subtract appropriate empirical quantities, and then apply the Finite Class Lemma.

(b) Observe that

L(f̃m)− L∗(F) ≤ sup
f,f ′∈F: bm(f)=bm(f ′)

∣∣L(f)− L(f ′)
∣∣

≤ sup
f,f ′∈F: bm(f)=bm(f ′)

P
[
f(X) 6= f(X ′)

]
≤ sup

A∈A

∣∣∣∣∣P (X ∈ A)− 1

m

m∑
i=1

1{Xi∈A}

∣∣∣∣∣ ,
where A is the class of all sets of the form {x ∈ X : f(x) 6= f ′(x)} for all pairs f, f ′ ∈ F. Use
this to prove that

L(f̃m)− L∗(F) ≤ C
√
V (A)

m
+

√
2 log(2/δ)

m

with probability at least 1 − δ/2, where C > 0 is an absolute constant. (It is not hard to
show that V (A) ≤ 4V (F) — you don’t have to do this.)

(c) Finally, use parts (a)–(b) to prove that

L(f̂n)− L∗(F) ≤ 8

√
log |Sm(F)|
n−m

+ C

√
V (A)

m
+

√
2 log(2/δ)

n−m
+

√
2 log(2/δ)

m

with probability at least 1− δ.
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4. A simple penalized ERM scheme. When choosing a suitable hypothesis space, we often
face the following dilemma: If the hypothesis space is not “rich” enough, even the best
hypothesis from it may have unacceptably high expected risk. On the other hand, if it is too
rich, then there may be no guarantee of good behavior of the uniform deviations of empirical
means from population means. A great deal of effort in statistical learning theory is devoted to
finding ways of coping with this dilemma. One such way is to use multiple hypothesis spaces,
run ERM on each of them, and then choose the ERM solution that achieves a good trade-off
between the empirical risk and some measure of complexity of the hypothesis space at hand.
In this problem, you will investigate a very simple penalized ERM algorithm that chooses
between finitely many hypothesis classes, where the complexity of each class is measured in
a data-driven way by means of Rademacher averages.

Let F1, . . . ,FM be a finite collection of hypothesis spaces, where each Fm consists of functions
f from some space Z into [0, 1]. Let Zn be an i.i.d. sample from an unknown distribution P
over Z. For each m = 1, . . . ,M let

f̂ (m)
n := arg min

f∈Fm
Pn(f)

be an empirical risk minimizer over Fm, and let f̂n = f̂
(m̂)
n , where

m̂ = arg min
1≤m≤M

{
Pn(f̂ (m)

n ) + 2Rn(Fm(Zn))
}
.

Prove that

P (f̂n) ≤ min
1≤m≤M

{
inf
f∈Fm

Pn(f) + 2Rn(Fm(Zn))

}
+

√
25 log

(
M
δ

)
n

with probability at least 1− δ.
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