ECE 543: Statistical Learning Theory

Maxim Raginsky

February 12, 2021

Homework 1

Assigned February 11; due February 24, 2021

Note: natural logarithms are used throughout.

1. A concentration bound for x> random variables. Let Xi,..., X, be ii.d. Gaussian
random variables with mean 0 and variance 1. The sum of their squares, U = X7 + ... + X2
has the x? distribution with n degrees of freedom. In this problem, you will prove the following
tail bound for U:

P<U—n22\/ﬁ+2t) <e for all ¢t > 0. (1)

(a) Let Z be a real-valued random variable, such that the bound
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holds with some v, ¢ > 0 for all 0 < s < 1/c. Use the Chernoff bounding trick to prove that
P (7> Vvt +et) <™t
for all t > 0.

(b) Now use the result of part (a) to prove (1).

Hint: Show that Z = U — n satisfies (2) for suitable choices of v and ¢. You may also find
the following inequality useful:
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2. Convexity. Let I be an interval of the real line. A function f: I — R is called convex if
fz+ (1 =Ny) <Af(2)+ (1= N)f(y)

for all A € [0,1] and all =,y € I. Equivalently, f is convex if the straight line segment joining
the points (x, f(z)) and (y, f(y)) for any two x,y € I lies above the graph of f. Here are
some useful facts about convex functions:



e Second-order condition. If I is an open interval and f is twice differentiable on I,
then it is convex if and only if f”(z) > 0 for all z € I.

e Jensen’s inequality. If f : I — R is convex, then for any random variable X with
values in I,

F(E[X]) <E[f(X)].
In this problem, you will get to explore the world of convex functions.

(a) Given a pair z,y € I, consider the function F,, : [0,1] — R, defined by

Foy(t) = f(z+t(y — ).
Prove that f is convex if and only if F, , is convex for all z,y € I.

Note: the function f is not necessarily differentiable.

(b) Suppose that g : [0,a] — R is convex and monotone increasing. Prove that the func-
tion f(x) = g(|x|) is convex on the interval [—a, al.

(c) Use convexity to prove the following inequality: for any a > 0,

e < cosha + x sinh a, —-1<z<1.

(d) Let U be a real-valued random variable. Prove that its logarithmic moment-generating
function 1 (a) = log E[e®X] is convex on the real line. (You may assume that interchanging
derivative and expectation is permissible.)

. Improving the Hoeffding bound. Let Xj,..., X,, be n independent Bernoulli(§) random
variables. Their sum S = X; + ...+ X, is a Binomial(n, #) random variable. The Hoeffding
bound tells us that, for any « € [, 1],

P(S>an) < e=2n(a=0) (3)
In this problem, you will obtain an improvement of (3).
(a) Use the Chernoff bounding trick to show that, for any « € [0, 1],

P (S > an) < e nd@l®)] (4)

where
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is the Kullback—Leibler divergence (or relative entropy) between Bernoulli(«) and Bernoulli(6)
random variables.

(b) Prove that the bound in (4) is, indeed, tighter than the Hoeffding bound (3).



4. Generalizing Hoeffding’s inequality. In class, we have proved Hoeffding’s inequality that
gives an exponential bound on the deviation probability P[| X1 + ...+ X,,| > t] for a sum of
independent random variables that are bounded and have zero mean. In this problem, you
will develop a generalization of Hoeffding’s inequality to sums of dependent random variables
that satisfy a certain weak orthogonality condition.

(a) In preparation for the rest of the problem, derive the inequality

2
coshzx < € /2, reR

as a consequence of Hoeffding’s lemma.

Hint: Find a suitable bounded random variable U, such that cosh z = E[e*V].

(b) We say that a collection Xj,..., X, of random variables is a multiplicative system if,
for any 1 < k <n and any set of k indices 1 < i1 <ig < ... <ip <mn,

E[X; Xi, ... X; ] =0.

Prove that if X1,..., X, are a multiplicative system, then
n n
i=1 i=1

for any choice of real constants a1,...,a, and by,...,b,.

(c) Let Uy, ...,U, be n possibly dependent random variables, and let Z be any real-valued
random variable jointly distributed with them. For each 4, define the martingale difference
X; = E[Z|U"] — E[Z|U"" '] (where E[Z|U°] = EZ). Prove that X1,..., X, are a multiplica-
tive system.

(d) Consider a multiplicative system Xj,..., X, such that —¢; < X; < ¢; for each i, where
¢; > 0 are some finite constants. Prove that, for any ¢ > 0,

n n
E |exp <tZXZ>] < Hcosh(tci).
i=1 i=1
(e) Now for the final step: prove that if X,..., X, are a multiplicative system of random

variables satisfying the boundedness condition of part (c), then
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5. Bin packing. This is a classical application of McDiarmid’s inequality. Let Xi,..., X, be
i.i.d. random variables taking values in [0, 1]. Each X; is the size of a package to be shipped.
The packages are shipped in bin of size 1, so each bin can hold any set of packages whose




sizes sum to at most 1. Let B, = f(X1,...,X,) be the minimal number of bins needed to
ship the packages with sizes X1, ..., X,,. Computing B, is a hard combinatorial optimization
problem; however, we can say something about its mean and tail behavior.

(a) Let 1 be the common mean of the X;’s. Prove that EB,, > npu.

(b) Prove that, for any £ > 0,

P (Bn <u-— E) < exp (—2n€2) .

n



