
ECE 543: Statistical Learning Theory

Maxim Raginsky

February 12, 2021

Homework 1

Assigned February 11; due February 24, 2021

Note: natural logarithms are used throughout.

1. A concentration bound for χ2 random variables. Let X1, . . . , Xn be i.i.d. Gaussian
random variables with mean 0 and variance 1. The sum of their squares, U = X2

1 + . . .+X2
n

has the χ2 distribution with n degrees of freedom. In this problem, you will prove the following
tail bound for U :

P
(
U − n ≥ 2

√
nt+ 2t

)
≤ e−t, for all t > 0. (1)

(a) Let Z be a real-valued random variable, such that the bound

log E[esZ ] ≤ vs2

2(1− cs)
(2)

holds with some v, c > 0 for all 0 < s < 1/c. Use the Chernoff bounding trick to prove that

P
(
Z ≥

√
2vt+ ct

)
≤ e−t

for all t > 0.

(b) Now use the result of part (a) to prove (1).

Hint: Show that Z = U − n satisfies (2) for suitable choices of v and c. You may also find
the following inequality useful:

−s− 1

2
log(1− 2s) ≤ s2

1− 2s
, 0 < s < 1/2.

2. Convexity. Let I be an interval of the real line. A function f : I → R is called convex if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1] and all x, y ∈ I. Equivalently, f is convex if the straight line segment joining
the points (x, f(x)) and (y, f(y)) for any two x, y ∈ I lies above the graph of f . Here are
some useful facts about convex functions:
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• Second-order condition. If I is an open interval and f is twice differentiable on I,
then it is convex if and only if f ′′(x) ≥ 0 for all x ∈ I.

• Jensen’s inequality. If f : I → R is convex, then for any random variable X with
values in I,

f(E[X]) ≤ E[f(X)].

In this problem, you will get to explore the world of convex functions.

(a) Given a pair x, y ∈ I, consider the function Fx,y : [0, 1]→ R, defined by

Fx,y(t) = f
(
x+ t(y − x)

)
.

Prove that f is convex if and only if Fx,y is convex for all x, y ∈ I.

Note: the function f is not necessarily differentiable.

(b) Suppose that g : [0, a] → R is convex and monotone increasing. Prove that the func-
tion f(x) = g(|x|) is convex on the interval [−a, a].

(c) Use convexity to prove the following inequality: for any a > 0,

eax ≤ cosh a+ x sinh a, −1 ≤ x ≤ 1.

(d) Let U be a real-valued random variable. Prove that its logarithmic moment-generating
function ψ(a) = log E[eaX ] is convex on the real line. (You may assume that interchanging
derivative and expectation is permissible.)

3. Improving the Hoeffding bound. Let X1, . . . , Xn be n independent Bernoulli(θ) random
variables. Their sum S = X1 + . . .+Xn is a Binomial(n, θ) random variable. The Hoeffding
bound tells us that, for any α ∈ [θ, 1],

P (S ≥ αn) ≤ e−2n(α−θ)2 . (3)

In this problem, you will obtain an improvement of (3).

(a) Use the Chernoff bounding trick to show that, for any α ∈ [θ, 1],

P (S ≥ αn) ≤ e−nd(α‖θ), (4)

where

d(α‖θ) := α log
α

θ
+ (1− α) log

1− α
1− θ

is the Kullback–Leibler divergence (or relative entropy) between Bernoulli(α) and Bernoulli(θ)
random variables.

(b) Prove that the bound in (4) is, indeed, tighter than the Hoeffding bound (3).
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4. Generalizing Hoeffding’s inequality. In class, we have proved Hoeffding’s inequality that
gives an exponential bound on the deviation probability P[|X1 + . . .+Xn| ≥ t] for a sum of
independent random variables that are bounded and have zero mean. In this problem, you
will develop a generalization of Hoeffding’s inequality to sums of dependent random variables
that satisfy a certain weak orthogonality condition.

(a) In preparation for the rest of the problem, derive the inequality

coshx ≤ ex2/2, x ∈ R

as a consequence of Hoeffding’s lemma.

Hint: Find a suitable bounded random variable U , such that coshx = E[exU ].

(b) We say that a collection X1, . . . , Xn of random variables is a multiplicative system if,
for any 1 ≤ k ≤ n and any set of k indices 1 ≤ i1 < i2 < . . . < ik ≤ n,

E[Xi1Xi2 . . . Xik ] = 0.

Prove that if X1, . . . , Xn are a multiplicative system, then

E

[
n∏
i=1

(aiXi + bi)

]
=

n∏
i=1

bi

for any choice of real constants a1, . . . , an and b1, . . . , bn.

(c) Let U1, . . . , Un be n possibly dependent random variables, and let Z be any real-valued
random variable jointly distributed with them. For each i, define the martingale difference
Xi = E[Z|U i] − E[Z|U i−1] (where E[Z|U0] ≡ EZ). Prove that X1, . . . , Xn are a multiplica-
tive system.

(d) Consider a multiplicative system X1, . . . , Xn, such that −ci ≤ Xi ≤ ci for each i, where
ci > 0 are some finite constants. Prove that, for any t > 0,

E

[
exp

(
t
n∑
i=1

Xi

)]
≤

n∏
i=1

cosh(tci).

(e) Now for the final step: prove that if X1, . . . , Xn are a multiplicative system of random
variables satisfying the boundedness condition of part (c), then

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
.

5. Bin packing. This is a classical application of McDiarmid’s inequality. Let X1, . . . , Xn be
i.i.d. random variables taking values in [0, 1]. Each Xi is the size of a package to be shipped.
The packages are shipped in bin of size 1, so each bin can hold any set of packages whose
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sizes sum to at most 1. Let Bn = f(X1, . . . , Xn) be the minimal number of bins needed to
ship the packages with sizes X1, . . . , Xn. Computing Bn is a hard combinatorial optimization
problem; however, we can say something about its mean and tail behavior.

(a) Let µ be the common mean of the Xi’s. Prove that EBn ≥ nµ.

(b) Prove that, for any ε > 0,

P

(
Bn
n
≤ µ− ε

)
≤ exp

(
−2nε2

)
.
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