Online Parameter Estimation for LTI systems
Recap:

$$
\begin{aligned}
& \dot{x}=A x+b u \\
& y=c^{\top} x
\end{aligned}
$$

$$
\underset{\substack{y, u \in R \\ x \in \mathbb{R}^{n}}}{ } \quad(S / S 0)
$$

$$
A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}
$$

ilo description:

$$
y(\pi)=c^{\top} e^{A t} x(0)+\int_{0}^{t} c^{\top} e^{A(t-s)} b u(s) d s, \quad t \geqslant 0
$$

linear parametrization:

$$
\begin{aligned}
Y(s) & =G(s) U(s) \quad \text { (freq. domain) } \\
G(s) & =c^{T}\left(s I_{n}-A\right)^{-1} b \\
& =\frac{b_{n-1} s^{n-1}+b_{n-2} s^{n-2}+\cdots+b_{1}+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
\end{aligned}
$$

nth-ader controlled ODE (Output y is $\begin{aligned} & \text { controlled b }\end{aligned}$

$$
\begin{aligned}
& \left(s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}\right) y(s) \\
& \quad=\left(b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}\right) \cup(s) \quad \text { [FD] } \\
& \begin{aligned}
y^{(n)} & +a_{n-1} y^{(n-1)} \\
& +\cdots+a_{1} y^{\prime}+a_{0} y \\
& =b_{n-1} u^{(n-1)}+\cdots+b_{1} u^{\prime}+b_{0} u \quad(r D]
\end{aligned}
\end{aligned}
$$

Linear parametrization:

$$
\begin{aligned}
& y^{(n)}=\theta^{\top} v \quad \text { where } \theta:=\left(b_{n-1, \ldots,} b_{1}, b_{0}, a_{n}, \ldots, a_{1,} a_{0}\right)^{\top} \\
& v(t):=\left(u^{(n-1)}(t), \ldots, u^{\prime}(t), u(t),\right. \\
& \begin{array}{l}
u(n(t), \ldots, u(t), u(t), \\
\left.\left.-y^{(n-1}\right)(t), \ldots,-y^{\prime}(t),-y(t)\right)^{\top}
\end{array} \\
& s^{n} y(s)=v^{\top} V(s) \\
& Z(s):=\frac{5^{n}}{\Lambda(s)}, \quad \Phi(s)=\left(\frac{s^{n-1}}{1(s)} U(s), \ldots, \frac{1}{1(s)} U(s),\right. \\
& \left.-\frac{s^{n-1}}{1(s)} y(s), \ldots-\frac{1}{\pi(s)}, Y(s)\right)^{\top}
\end{aligned}
$$

where $1(s)=s^{n}+\lambda_{n-1} s^{n-1}+\cdots+\lambda, s+\lambda_{0}$ is a polynomial with stable moots: $\frac{s^{n}}{1(s)}, \frac{s^{n-1}}{1(s)}, \cdots, \frac{s}{\pi(s)}, \frac{1}{1(s)}$ are stable filters

Back to time domain: $\quad z(t)=\theta^{\top} \phi(t)$

$$
G(s)=c T\left(s I_{n}-A\right)^{-1} b
$$

bank of fitters \leftarrow do not depend on A,b,c

$$
z(t)=\theta^{\top} \phi(t), \quad \theta \in \mathbb{R}^{2 n}
$$

$\phi(t)$ is the vector of regressurs

Upshot: we can process u,y in am online manner to get z, ϕ and estimate θ online using (ϕ, z) as data.

$$
J_{t}(\hat{\theta}):=\frac{1}{2}(\hat{z}(t)-z(t))^{2}, \quad \hat{z}(t)-\hat{v}^{\top} \phi(t)
$$

(instantaneous cost)

$$
\begin{aligned}
& \overline{J_{t}}(\hat{\theta}):=\frac{1}{2}\left(\frac{1}{z}(t)-\bar{z}(t)\right)^{2} \quad \bar{z}(t)=\theta^{\top} \bar{\phi}(t) \\
& \frac{1}{\bar{z}}(t)=\hat{\theta}^{\top} \bar{\phi}(t) \\
& \bar{\phi}(t):=\frac{\phi(t)}{m(t)}
\end{aligned}
$$

where $m(t)$ is a positive signal chosen so that $\frac{\not \subset}{m} \leqslant c_{0}$ $e \cdot g . m(t)=1+\phi(t)^{\top} \phi(t)$.

Gradient flow: $\quad \hat{\theta}=-\Gamma \nabla \bar{\sigma}_{t}(\hat{\vartheta})$
where $\Gamma=\Gamma^{\top}>0$ is a
fixed adaptation gain matrix

$$
\begin{aligned}
\bar{e}(t) & :=\frac{1}{\bar{z}}(t)-\bar{z}(t) \\
& =(\bar{\theta}(t)-\theta)^{\top} \bar{\phi}(t)
\end{aligned}
$$

- (normalized) prediction error

Theorem (Ioannou-Sun)
(i) $\hat{\theta} \in L_{\infty}$ and $\bar{e}, \hat{\theta} \in L_{2} \cap L_{\infty}$
(ii) if $\bar{\phi}=\frac{\phi}{m}$ is Persistently Exciting, $*$, then

$$
\hat{\theta}(t) \rightarrow \theta \text { as } t \rightarrow \infty
$$

exponentiony fast.

Remarks:

1) $\hat{\theta} \in L_{\infty} \Leftrightarrow \operatorname{Iup}_{t \geqslant 0}|\vec{B}(t)|<\infty$
(parameter estimates don't escape to ∞)
2) $\bar{e}, \dot{\ominus} \in L_{2} \cap L_{\infty}$

$$
\begin{aligned}
& \bar{e}(t):=\frac{1}{z}(t)-\bar{z}(t) \\
& =\underbrace{(\hat{\theta}(t)-\theta)^{\top} \phi(t) \quad \bar{\phi}=\frac{\phi}{m} \in L_{\infty}}_{\tilde{\theta}(z)}
\end{aligned}
$$

$$
\begin{array}{ll}
\sup _{t \geqslant 0}(\bar{e}(t))<\infty & \left(\bar{e} \in L_{\infty}\right) \\
\int_{0}^{\infty} \bar{e}(t)^{2} d t<\infty & \left(\bar{e} \in L_{2}\right)
\end{array}
$$

Same applies to $\dot{\theta}$ (sensitivity to data)
$\dot{\hat{\theta}} \in L \infty$ (bed rate of change of \vec{v})
$\dot{\hat{\theta}} \in L_{2} \quad$ (slow adaptation)
3) PE for vector-valued signals

$$
\begin{aligned}
& \bar{J}_{t}(\hat{\theta})=\frac{1}{2}(\hat{\theta}-\theta)^{\top} \bar{\phi}(t) \bar{\phi}(t)^{\top}(\hat{\theta}-\theta) \\
& \nabla \bar{J}_{t}(\hat{\theta})=\bar{\phi}(t) \not \bar{\phi}(t)^{\top}(\hat{\theta}-\theta) \\
& \nabla^{2} \bar{J}_{t}(\hat{\theta})=\bar{\phi}(t) \nexists(t)^{\top} \quad \text { - rank-1 } \\
&-\nabla^{2} \bar{J}_{t} \text { is a singular positive semidefinite } \\
& \forall t \geqslant 0
\end{aligned}
$$

Integrated cost:

$$
\begin{aligned}
\overline{\bar{J}}_{t}(\hat{\theta}) & =\int_{0}^{t} \bar{\sigma}_{s}(\hat{\theta}) d s \\
& =\frac{1}{2}(\hat{\theta}-\theta)^{T} \int_{0}^{t} \bar{\phi}(s) \bar{\phi}(s)^{\top} d s(\hat{\theta}-\theta) \\
\nabla^{2} \overline{\bar{J}}_{t}(\hat{\theta}) & =\int_{0}^{t} \bar{\phi}(s) \phi(s)^{\top} d s
\end{aligned}
$$

- can be nonsingular if \varnothing persistently moves a round
Def: $\bar{\phi}$ is $D E$ if $J \alpha_{0}, T_{0}>0 \quad s, t$.

$$
\int_{t_{0}}^{t_{0}+T_{0}} \bar{\phi}(t) \bar{\phi}(t)^{\top} d t \geq \alpha_{0} T_{0} I, \forall t_{0} \geqslant 0
$$

$r \int_{t_{0}}^{t_{0}+T_{0}} v^{\top} \Phi(t) \Phi(t)^{\top} v d t \geqslant \alpha_{0} T_{0}|v|^{2}$,
for all $t_{0} \geqslant 0$ and $a / l \quad v \in \mathbb{R}^{2 n}$.

$$
\begin{array}{ccc}
\dot{\theta}=-\Gamma \nabla \bar{\sigma}_{\star}(\hat{\theta}) & \tilde{\theta}=\hat{\theta}-\theta & \dot{\theta}=\hat{\theta} \\
\Gamma=\Gamma^{\top}>0 & \Gamma^{-1} \text { exists }
\end{array}
$$

Proof
(i) Introduce candiclate Lyapuron fon

So: $V(\hat{\theta}(t))$ is nonnegative, derreasing

$$
\begin{aligned}
& 0 \leq V\left(\tilde{\theta}^{2}(t)\right) \leq v(\tilde{\theta}(0)) \\
& \frac{1}{2} \tilde{\theta}(t)^{\top} \Gamma^{-1} \tilde{\theta}(t) \leq \frac{1}{2} \tilde{\theta}(0)^{\top} \Gamma^{-1} \tilde{\theta}(0) \\
& \sup |\tilde{\theta}(t)|<\infty \quad \Rightarrow \quad \tilde{\theta} \in L_{\infty} \Rightarrow \hat{\theta} \in L_{\infty}
\end{aligned}
$$

Now, $0 \leq \int_{0}^{t} \bar{e}^{2}(s) d s=-\int_{0}^{t} \dot{V}\left(0^{2}(s)\right) d s$

$$
=v(\tilde{v}(0))-v(\tilde{\theta}(t))
$$

$$
\leqslant v(\tilde{\theta}(0))<\infty \quad \theta t \geqslant 0
$$

$$
\begin{array}{ll}
\Rightarrow \bar{e} \in L_{2} & |\bar{e}| \leq|\tilde{\theta}||\bar{\phi}| \\
\bar{e}=\tilde{\sigma}^{\top} \bar{\phi} \quad \Rightarrow \quad \bar{e} \in L_{\infty}
\end{array}
$$

$$
\begin{aligned}
& V(\tilde{\theta})=\frac{1}{2} \tilde{\theta}^{T} \Gamma^{-1} \tilde{\theta} \\
& \dot{V}=\tilde{\theta}^{\top} \Gamma^{-1} \dot{\tilde{\jmath}} \\
& \left(\Gamma^{-1}=\left(r^{-1}\right)^{\top}>0\right) \\
& =\tilde{v}^{T} r^{-1} \dot{\hat{\theta}} \\
& =-\tilde{\theta}^{\top} \Gamma^{-1} \Gamma \nabla \bar{\sigma}_{t}(\hat{\theta}) \\
& =-\tilde{\theta}^{+} \nabla \bar{\sigma}_{t}(\hat{\theta}) \\
& \nabla \bar{v}_{t}(\hat{\theta})=\bar{\phi} \Phi^{\top}(\hat{\theta}-\theta) \\
& =\frac{(\hat{s}-\theta)^{\top} \bar{\phi}}{\bar{e}} \bar{\phi} \\
& \Rightarrow \dot{v}=-\tilde{\sigma}^{\top} \overline{\bar{e}} \\
& =(\hat{\theta}(t)-v)^{\top} \bar{\phi}(t) \\
& =\tilde{\theta}(t)^{\top} \bar{\phi}(t) \\
& =-\bar{e}^{2} \leqslant 0 \\
& \bar{z}(t)=\bar{z}(t)-\bar{z}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{e} \in L_{2} \cap L_{\infty} \\
& \dot{\hat{\theta}}=-\Gamma \nabla \bar{\sigma}_{t}(\hat{\theta}) \\
& =-\Gamma \bar{e} \overline{ } \\
& |\dot{\hat{\theta}}|=|\Gamma \bar{e} \bar{\phi}| \\
& \leqslant|\Gamma| \quad|\bar{e}||\bar{\sigma}| \\
& \underset{\substack{\text { spectral } \\
\text { norm }}}{\perp} \rightarrow \\
& \Rightarrow \quad \dot{\theta} \in L_{2} \cap L_{\infty}
\end{aligned}
$$

(ii) convergence of $\hat{\theta}$ to θ and PE property

$$
\begin{array}{ll}
\tilde{v}=\hat{\theta}-\theta & \left(\theta \in \mathbb{R}^{2 n}-\right.\text { constant vector } \\
\dot{\theta}=\dot{\hat{\theta}}=-\Gamma \bar{e} \Phi &
\end{array}
$$

where $\bar{e}=\Phi^{\top} \tilde{\theta}$
Define $A(t):=-\Gamma \bar{\sigma}(t) \nabla(t)^{\top} \in \mathbb{R}^{2 n \times 2 n}$

$$
c(t):=\Phi(t) \in \mathbb{R}^{2 n}
$$

Then we have the LTV system

$$
\begin{aligned}
& \dot{\tilde{\theta}}=A(t) \tilde{\theta} \\
& \underline{e}=C(t)^{\top} \tilde{\theta}
\end{aligned}
$$

with "state" $\tilde{\theta}$ and "output" \bar{e}.
We want to show $\tilde{\theta} \rightarrow 0$ exponentially fast.
This is implied by Uniform Complete Observability $(U C O)$ property of $\left(A(t), c(t)^{+}\right)$.

Lemma (Ioannou-Sun) An LTV system (A $(t), C(t)$) is UCO if the pair $(A(t)+L(t) C(t), C(t))$ is UCO fir some bed output injection matrices $L(t)$.

We have $\dot{\tilde{v}}=A(t) \tilde{\theta}$

$$
\bar{e}=c(t)^{\top} \tilde{\theta}
$$

$$
A(t)=-\Gamma \bar{\phi}(t) \phi(t)^{\top}
$$

$c(t)=\Phi(t)$
Take $L(t)=\Gamma \Phi(t)$

$$
\begin{aligned}
& A(t)+L(t) c(t)^{\top}=-\Gamma \Phi(t) \phi(t)^{\top}+\Gamma \Phi(t) \Phi(t)^{\top} \\
&=0
\end{aligned}
$$

Non we look at: $\quad \begin{aligned} \dot{\theta} & =0 \\ e & =c(t)^{\top} \tilde{\varepsilon}\end{aligned}\left(A(t)+L(t) c(t)^{\top}\right)$
For this system, can write down observability Gramian easily?

$$
\begin{aligned}
& M\left(t_{0}, t_{0}+T_{0}\right)=\int_{t_{0}}^{t_{0}+T_{0}} \Phi\left(t_{0}, t\right)^{\top} c(t) c(t)^{\top} I\left(t_{0}, t\right) d t \\
& \text { where } \Phi\left(t_{0}, t\right)=I \quad[\hat{v}(t)=\tilde{\theta}(0)]
\end{aligned}
$$

$$
\begin{aligned}
&\left.\Rightarrow M\left(t_{0}, t_{0}+T_{0}\right)=\int_{t_{0}}^{t_{0}+T_{0}} \Phi(t) \Phi \mid t\right)^{\top} d t \geqslant \alpha_{0} T_{0} I \\
&(b y P E \text { assumption) }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \dot{\tilde{\theta}}=A(t)^{\tilde{\theta}} \\
& \bar{e}=C(t)^{\tau} \tilde{\theta}
\end{aligned}
$$

is UCO, $\rightarrow \tilde{\theta}(t) \rightarrow 0$ exponentially fast.

