Problems to be handed in

1 Recall Barbalat's lemma: If $f:[0, \infty) \rightarrow \mathbb{R}$ is uniformly continuous and the integral

$$
\int_{0}^{\infty} f(t) \mathrm{d} t
$$

exists and is finite, then $f(t) \xrightarrow{t \rightarrow \infty} 0$. Give a detailed proof of the corollary we have been using: If $x(t)$ and $\dot{x}(t)$ are both bounded and W is a continuous function taking nonnegative values, such that the integral

$$
\int_{0}^{\infty} W(x(t)) \mathrm{d} t
$$

exists and is finite, then $W(x(t)) \xrightarrow{t \rightarrow \infty} 0$.
2 Consider a linear time-varying system

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t) \\
y(t) & =C(t) x(t)
\end{aligned}
$$

where $x(t) \in \mathbb{R}^{n}$ is the state, $y(t) \in \mathbb{R}^{p}$ is the output, and $A(t), C(t)$ are matrix-valued functions of time. Let $\Phi(t, s)$, for $0 \leq s \leq t$, denote its transition matrix - it solves the ODE

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \Phi(t, s)=A(t) \Phi(t, s), \quad t \geq s
$$

with initial condition $\Phi(s, s)=I_{n}$ (the $n \times n$ identity matrix). In particular, $x(t)=\Phi(t, s) x(s)$ for any $0 \leq s \leq t$.

We say that this system is Uniformly Completely Observable (UCO) if there exist positive constants β_{1}, β_{2}, T, such that the observability Gramian

$$
M\left(t_{0}, t_{0}+T\right):=\int_{t_{0}}^{t_{0}+T} \Phi\left(t, t_{0}\right)^{\top} C(t)^{\top} C(t) \Phi\left(t, t_{0}\right) \mathrm{d} t
$$

satisfies the matrix inequality

$$
\beta_{1} I_{n} \preceq M\left(t_{0}, t_{0}+T\right) \preceq \beta_{2} I_{n}
$$

for all $t_{0} \geq 0$. Prove that if the system is UCO, then $y(t) \xrightarrow{t \rightarrow \infty} 0$ implies $x(t) \xrightarrow{t \rightarrow \infty} 0$.
3 Consider the first-order scalar plant

$$
\dot{y}=\theta f(y)+u,
$$

where $\theta \in \mathbb{R}$ is unknown and f is a known function (the case $f(y)=y$ was considered in class). Design a controller that achieves output regulation, $y(t) \xrightarrow{t \rightarrow \infty} 0$, while keeping all signals in the closed-loop system bounded. Give a proof of universal regulation by choosing a suitable candidate Lyapunov function. You may assume that f is as well-behaved as needed to guarantee existence and uniqueness of closed-loop solutions for all $t \geq 0$.

4 Consider the first-order scalar plant

$$
\dot{y}=a y+b u,
$$

where $a \in \mathbb{R}$ and $b>0$ are unknown parameters. In class, we have shown that the dynamic output feedback controller $u=-k y$ with tuning law $\dot{k}=y^{2}$ achieves universal regulation using the candidate Lyapunov function $V(y)=\frac{1}{2} y^{2}$. Give an alternative analysis based on the weak Lyapunov criterion and a suitable Lyapunov function $V(y, k)$ for the closed-loop system

$$
\begin{aligned}
& \dot{y}=(a-b k) y \\
& \dot{k}=y^{2}
\end{aligned}
$$

