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Identification and Control of Dynamical Systems 
Using Neural Networks 

KUMPATI S .  NARENDRA FELLOW, IEEE. AND KANNAN PARTHASARATHY 

Abstract-The paper demonstrates that neural networks can be used 
effectively for the identification and control of nonlinear dynamical 
systems. The emphasis of the paper is on models for both identification 
and control. Static and dynamic back-propagation methods for the ad- 
justment of parameters are discussed. In the models that are intro- 
duced, multilayer and recurrent networks are interconnected in novel 
configurations and hence there is a real need to study them in a unified 
fashion. Simulation results reveal that the identification and adaptive 
control schemes suggested are practically feasible. Basic concepts and 
definitions are introduced throughout the paper, and theoretical ques- 
tions which have to be addressed are also described. 

I. INTRODUCTION 
ATHEMATICAL systems theory, which has in the M past five decades evolved into a powerful scientific 

discipline of wide applicability, deals with the analysis 
and synthesis of dynamical systems. The best developed 
aspect of the theory treats systems defined by linear op- 
erators using well established techniques based on linear 
algebra, complex variable theory, and the theory of or- 
dinary linear differential equations. Since design tech- 
niques for dynamical systems are closely related to their 
stability properties and since necessary and sufficient con- 
ditions for the stability of linear time-invariant systems 
have been generated over the past century, well-known 
design methods have been established for such systems. 
In contrast to this, the stability of nonlinear systems can 
be established for the most part only on a system-by-sys- 
tern basis and hence it is not surprising that design pro- 
cedures that simultaneously meet the requirements of sta- 
bility, robustness, and good dynamical response are not 
currently available for large classes of such systems. 

In the past three decades major advances have been 
made in adaptive identification and control for identifying 
and controlling linear time-invariant plants with unknown 
parameters. The choice of the identifier and controller 
structures is based on well established results in linear 
systems theory. Stable adaptive laws for the adjustment 
of parameters in these cases which assure the global sta- 
bility of the relevant overall systems are also based on 
properties of linear systems as well as stability results that 
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are well known for such systems [ 13. In this paper our 
interest is in the identification and control of nonlinear 
dynamic plants using neural networks. Since very few re- 
sults exist in nonlinear systems theory which can be di- 
rectly applied, considerable care has to be exercised in the 
statement of the problems, the choice of the identifier and 
controller structures, as well as the generation of adaptive 
laws for the adjustment of the parameters. 

Two classes of neural networks which have received 
considerable attention in the area of artificial neural net- 
works in recent years are: 1) multilayer neural networks 
and 2) recurrent networks. Multilayer networks have 
proved extremely successful in pattern recognition prob- 
lems [2]-[5] while recurrent networks have been used in 
associative memories as well as for the solution of opti- 
mization problems [6]-[9]. From a systems theoretic point 
of view, multilayer networks represent static nonlinear 
maps while recurrent networks are represented by nonlin- 
ear dynamic feedback systems. In spite of the seeming 
differences between the two classes of networks, there are 
compelling reasons to view them in a unified fashion. In 
fact, it is the conviction of the authors that dynamical ele- 
ments and feedback will be increasingly used in the future, 
resulting in complex systems containing both types of net- 
works. This, in turn, will necessitate a unified treatment 
of such networks. In Section I11 of this paper this view- 
point is elaborated further. 

This paper is written with three principal objectives. 
This first and most important objective is to suggest iden- 
tification as well as controller structures using neural net- 
works for the adaptive control of unknown nonlinear dy- 
namical systems. While major advances have been made 
in the design of adaptive controllers for linear systems 
with unknown parameters, such controllers cannot be used 
for the global control of nonlinear systems. The models 
suggested consequently represent a first step in this direc- 
tion. A second objective is to present a prescriptive 
method for the dynamic adjustment of the parameters 
based on back propagation. The term dynamic back prop- 
agation is introduced in this context. The third and final 
objective is to state clearly the many theoretical assump- 
tions that have to be made to have well posed problems. 
Block diagram representations of systems commonly used 
in systems theory, as well as computer simulations, are 
included throughout the paper to illustrate the various 
concepts introduced. The paper is organized as follows: 
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Section I1 deals with basic concepts and notational details 
used throughout the paper. In Section 111, multilayer and 
recurrent networks are treated in a unified fashion. Sec- 
tion IV deals with static and dynamic methods for the ad- 
justment of parameters of neural networks. Identification 
models are introduced in Section V while Section VI deals 
with the problem of adaptive control. Finally, in Section 
VII, some directions are given for future work. 

11. PRELIMINARIES, BASIC CONCEPTS, AND NOTATION 
In this section, many concepts related to the problem of 

identification and control are collected and presented for 
easy reference. While only some of them are directly used 
in the procedures discussed in Sections V and VI, all of 
them are relevant for a broad understanding of the role of 
neural networks in dynamical systems. 

A .  Characterization and Identijication of Systems 
System characterization and identification are funda- 

mental problems in systems theory. The problem of char- 
acterization is concerned with the mathematical represen- 
tation of a system; a model of a system is expressed as an 
operator P from an input space U into an output space y 
and the objective is to characterize the class 6 to which 
P belongs. Given a class 6 and the fact that P E*@, the 
problem of identificaeon is to Getermine a class 6 c 6 
and an element P E 6 so that P approximates P in some 
desired sense. In static systems, the spaces 'U and y are 
subsets of Rn and Rm, respectively, while in dynamical 
systems they are generally assumed to be bounded Leb- 
esgue integrable functions on the interval [0, TI or [0, 
0 0 ) .  In both cases, the operator P is defined implicitly by 
the specified input-output pairs. The choice of the class 
of identification moGels 6, as well as the specific method 
used to determine P ,  depends upon a variety of factors 
which are related to the accuracy desired, as well as an- 
alyticalA tractability. These include the adequacy of the 
model P to represent P ,  its simplicity, the ease with which 
it can be identified, how readily it can be extended if i,t 
does not satisfy specifications, and finally whether the P 
chosen is to be used off line or on line. In practical appli- 
cations many of these decisions naturally depend upon the 
prior information that is available concerning the plant to 
be identified. 

1.  Identijication of Static and Dynamic Systems: The 
problem of pattern recognition is a typical example of 
identification of static systems. Compact sets U, C A" are 
mapped into elements y,  E Rm;(i  = 1, 2, * - , )  in the 
output space by a decision function P .  The elements of U, 
denote the pattern vectors corresponding to class y,. In 
dynamical systems, the operator P defining a given plant 
is implicitly defined by the input-output pairs of time 
functions u ( t ) ,  y ( t ) , t  E [ 0 ,  TI .  In both cases the objec- 
tive is to determine P so that 

119 - YII = IIP(u) - P(u)I)  5 € 9  
U E U ( 1 )  

for some desired 6 > 0 and a suitably defined norm (de- 
noted by 1 1 .  1 1 )  on the output space. In ( l ) ,  P ( u )  = j t  de- 

notes the output of the identification model and hence 2 
- y A e is the error between the output generated by P 
and the observed output y .  A more detailed statement of 
the identification problem of dynamical systems is given 
in Section 11-C. 

2.  The Weierstrass Theorem and the Stone- Weier- 
strum Theorem: Let C (  [ a ,  b ] )  denote the space of con- 
tinuous real valued functions defined on the interval [ a ,  
b ]  with the norm off E C (  [ a ,  b] )  defined by 

The famous approximation theorem of Weierstrass states 
that any function in C( [ a ,  b ] )  can be approximated ar- 
bitrarily closely by a polynomial. Alternately, the set of 
polynomials is dense in C ( [ a ,  b]) .  Naturally, Weier- 
strass's theorem and its generalization to multiple dimen- 
sions finds wide application in the approximation of con- 
tinuous functions f :  Rn -+ Rm using polynomials (e.g., 
pattern recognition). A generalization of Weierstrass's 
theorem due to Stone, called the Stone-Weierstrass theo- 
rem can be used as the starting point for all the approxi- 
mation procedures for dynamical systems. 

Theorem: (Stone-Weierstrass [lo]): Let 'U be a com- 
pact metric space. If 6 is a subalgebra of C (  U, R)  which 
contaip the constant functions and separates points of U 
then 6 is dense in C (  'U, h). 

In the problems of interest to us we shall assume that 
the plant P to be identified belongs to the space 6 of 
bounded, continuous, time-invariant and causal operators 
[ 111. By the Stone-Weierstrass theorem, if 6 satisfies the 
conditions of the theorem, a model belonging to 6 can be 
chosen which approximates any specified operator P E 6 .  

A vast literature exists on the characterization of non- 
linear functionals and includes the classic works of Vol- 
terra, Wiener, Barret, and Urysohn. Using the Stone- 
Weierstrass theorem it can be shown that a given nonlin- 
ear functional under certain conditions can be represented 
by a corresponding series such as the Volterra series or 
the Wiener series. In spite of the impressive theoretical 
work that these represent, very few have found wide ap- 
plication in the identification of large classes of practical 
nonlinear systems. In this paper our interest is mainly on 
representations which permit on-line identification and 
control of dynamic systems in terms of finite dimensional 
nonlinear difference (or differential) equations. Such non- 
linear models are well known in the systems literature and 
are considered in the following subsection. 

B. Input-State-Output Representation of Systems 
The method of representing dynamical systems by vec- 

tor differential or difference equations is currently well 
established in systems theory and applies to a fairly large 
class of systems. For example, the differential equations 

. I . _  ......- 



6 

I I 

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I .  NO. I .  MARCH 1990 

where x ( t )  2 [ x l ( t ) ,  x 2 ( t ) ,  
[ u , ( t > ,  u 2 ( t ) ,  * 
* - - , ym ( t ) lT  represent a p input m output system of or- 
der n with ui (  t )  representing the inputs, xi( t )  the state 
variables, and y i ( t )  the outputs of the system. 9 and \k 
are static nonlinear maps defined as 9 : R" x Rp -+ R" and 
\k : Rfl + Rm. The vector x( t )  denotes the state of the 
system at time t and is determined by the state at time to 
C t and the input u defined over the interval [ to ,  t). The 
output y (  t )  is determined completely by the state of the 
system at time t .  Equation (2) is referred to as the input- 
state-output representation of the system. In this paper we 
will be concerned with discrete-time systems which can 
be represented by difference equations corresponding to 
the differential equations given in (2). These take the form 

- - , x , , ( t ) l T ,  u ( t )  
- , u p ( t ) l T  and Y ( t )  A [ Y l ( t ) ,  Y 2 ( t ) ,  

x ( k  + 1)  = 9 [ x ( k ) ,  u ( k ) ]  

Y ( k )  = W k ) ]  ( 3 )  
where u ( . ), x ( . ), and y ( . ) are discrete time sequences. 
Most of the results presented can, however, be extended 
to continuous time systems as well. If the system de- 
scribed by (3) is assumed to be linear and time invariant, 
the equations governing its behavior can be expressed as 

x(k + 1)  = A+), + B u ( k )  

Y ( k )  = W k )  (4)  
where A ,  B, and C a r e  ( n  X n ) ,  ( n  X p ) ,  and ( m  X n )  
matrices, respectively. The system is then parameterized 
by the triple { C ,  A, B } . The theory of linear time-invari- 
ant systems, when C ,  A,  and B are known, is very well 
developed and concepts such as controllability, stability, 
and observability of such systems have been studied ex- 
tensively in the past three decades. Methods for deter- 
mining the control input U (. ) to optimize a performance 
criterion are also well known. The tractability of these 
different problems may be ultimately traced to the fact 
that they can be reduced to the solution of n linear equa- 
tions in n unknowns. In contrast to this, the problems in- 
volving nonlinear equations of the form (3), where the 
functions 9 and P are known, result in nonlinear alge- 
braic equations for the solution of which similar powerful 
methods do not exist. Consequently, as shown in the fol- 
lowing sections, several assumptions have to be made to 
make the problems analytically tractable. 

C. Identijication and Control 

I .  Identijication: When the functions 9 and \k in (3), 
or the matrices A, B, and C in (4), are unknown, the prob- 
lem of identification of the unknown system (referred to 
as the plant in the following sections) arises [12]. This 
can be formally stated as follows [ 11 : 

The input and output of a time-invariant, causal dis- 
crete-time dynamical plant are u ( . ) and y,, ( . ), respec- 
tively, where u ( . ) is a uniformly bounded function of 
time. The plant is assumed to be stable with a known pa- 
rameterization but with unknown values of the parame- 

q x w )  
model M -r"P3) Identification ypF--t-& Wk) 

model 
C ( k )  

(a) (b) 
Fig. 1. (a) Identification. (b) Model reference adaptive control. 

ters. The objective is to construct a suitable identification 
model (Fig. l(a)) which when subjected to the same input 
u ( k )  as the plant, produces an output j j p ( k )  which ap- 
proximates y p ( k )  in the sense described by (1). 

2. Control: Control theory deals with the analysis and 
synthesis of dynamical systems in which one or more 
variables are kept within prescribed limits. If the func- 
tions 9 and \k in (3) are known, the problem of control is 
to design a controller which generates the desired control 
input u(k) based on all the information available at that 
instant k. While a vast body of frequency and time-do- 
main techniques exist for the synthesis of controllers for 
linear systems of the form described in (4) with A, B, and 
C known, similar methods do not exist for nonlinear sys- 
tems, even when the functions 9 ( . , . ) and P ( . ) are spec- 
ified. In the last three decades there has been a great deal 
of interest in the control of plants when uncertainty exists 
regarding the dynamics of the plant [ 13. To assure math- 
ematical tractability, most of the effort has been directed 
towards the adaptive control of linear time-invariant plants 
with unknown parameters. Our interest in this paper lies 
primarily in the identification and control of unknown 
nonlinear dynamical systems. 

Adaptive systems which make explicit use of models 
for control have been studied extensively. Such systems 
are commonly referred to as model reference adaptive 
control (MRAC) systems. The implicit assumption in the 
formulation of the MRAC problem is that the designer is 
sufficiently familiar with the plant under consideration so 
that he can specify the desired behavior of the plant in 
terms of the output of a reference model. The MRAC 
problem can be qualitatively stated as follows (Fig. l(b)). 

a.  Model reference adaptive control: A plant P with 
an input-output pair { u(k), y p ( k ) }  is given. A stable 
reference model M is specified by its input-output pair 
{ r ( k ) ,  y , ( k ) }  where r : N  -+ R is a bounded function. 
The output y m ( k )  is the desired output of the plant. The 
aim is to determine the control input u ( k )  for all k 1 ko 
so that 

for some specified constant E 2 0. 
As described earlier, the choice of the identification 

model (i.e., its parameterization) and the method of ad- 
justing its parameters based on the identification error 
ei ( k )  constitute the two principal parts of the identifica- 
tion problem. Determining the controller structure, and 
adjusting its parameters to minimize the error between the 
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output of the plant and the desired output, represent the 
corresponding parts of the control problem. In Section 
11-C-3, some well-known methods for setting up an iden- 
tification model and a controller structure for a linear plant 
as well as the adjustment of identification and control pa- 
rameters are described. Following this, in Section 11-C-4, 
the problems encountered in the identification and control 
of nonlinear dynamical systems are briefly presented. 

3. Linear Systems: For linear time-invariant plants 
with unknown parameters, the generation of identification 
models are currently well known. For a single-input sin- 
gle-output (SISO) controllable and observable plant, the 
matrix A and the vectors B and C in (4) can be chosen in 
such a fashion that the plant equation can be written as 

n - l  m- I 

where ai and Pi are constant unknown parameters. A sim- 
ilar representation is also possible for the multi-input 
multi-output (MIMO) case. This implies that the output 
at time k + 1 is a linear combination of the past values of 
both the input and the output. Equation ( 5 )  motivates the 
choice of the following identification models: 

n - 1  

j p ( k  + 1 )  = c & i ( k ) j p ( k  - i )  
i = O  

m -  I 

+ c B j ( k ) U ( k  - J )  
j = O  

( Parallel model ) 
n - l  

j p ( k  + 1 )  = c &i(k)yp(k  - i )  
i = O  

m -  I 

+ e- B j ( k ) U ( k  - j ) 
j = O  

( Series-parallel model ) ( 7 ) 

where & i ( i  = 0, 1 ,  * - , n - 1 )  and B j ( j  = 0, 1 ,  
. . .  , m - 1)  are adjustable parameters. The output of 
the parallel identification model (6) at time k + 1 is j p  ( k  
+ 1 ) and is a linear combination of its past values as well 
as those of the input. In the series-parallel model, j p  ( k  + 
1 )  is a linear combination of the past values of the input 
and output of the plant. To generate stable adaptive laws, 
the series-parallel model is found to be preferable. In such 
a case, a typical adaptive algorithm has the form 

, Pm - I I T  will be denoted by p a?d * 7 an-1, PO, 
that of, the identification model [&o, * - 9 b n - 1 9  PO, 
* * , Pm-iITbyB.  

Linear time-invariant plants which are controllable can 
be shown to be stabilizable by linear state feedback. This 
fact has been used to design adaptive controllers for such 
plants. For example, if an upper bound on the order of 
the plant is known, the control input can be generated as 
a linear combination of the past values of the input and 
output respectively. If 8 ( k )  represents the control param- 
eter vector, it can be shown that a constant vector t9* ex- 
ists such that when 8 ( k )  = t9* the plant together with the 
controller has the same input-output characteristics as the 
reference model. Adaptive algorithms for adjusting t9( k )  
in a stable fashion are now well known and have the gen- 
eral form shown in (8). 

4. Nonlinear Sysrems: The importance of controllabil- 
ity and observability in the formulation of the identifica- 
tion and control problems for linear systems is evident 
from the discussion in Section 11-C-3. Other well-known 
results in linear systems theory are also called upon to 
choose a reference model as well as a suitable parameter- 
ization of the plant and to assure the existence of a desired 
controller. In recent years a number of authors have ad- 
dressed issues such as controllability, observability, feed- 
back stabilization, and observer design for nonlinear sys- 
tems [13 ] - [16 ] .  In spite of such attempts constructive 
procedures, similar to those available for linear systems, 
do not exist for nonlinear systems. Hence, the choice of 
identification and controller models for nonlinear plants 
is a formidable problem and successful identification and 
control has to depend upon several strong assumptions re- 
garding the input-output behavior of the plant. For ex- 
ample, if a SISO system is represented by the equation 
( 3 ) ,  we shall assume that the state of the system can be 
reconstructed from n measurements of the input and out- 
put. More precisely, y p ( k )  = \ k [ x ( k ) ] ,  y p ( k  + 1 )  = 
* [ * [ x ( k ) ,  u ( k ) ] ] ,  * - , y p ( k  + n - 1 )  = * [a[  * 

* [ * [ x ( k ) ,  u ( k ) l ,  u ( k  + 111, * * * 7 u ( k  + n - 2111 
yield n nonlinear equations in n unknowns x ( k )  if u ( k ) ,  - y p ( k  + n - 1 )  are 
specified and we shall assume that for any set of values 
of u ( k )  in a compact region in U, a unique solution to 
the above problem exists. This permits identification pro- 
cedures to be proposed for nonlinear systems along lines 
similar to those in the linear case. 

is known in (3) and the state 
vector is accessible, the determination of u ( . ) for the plant 

* 

, u ( k  + n - 2) ,  y p ( k ) ,  - 

Even when the function 

&i(k + 1 )  to have a desired trajectory is an equally difficult problem. 
Hence, for the generation of the control input, the exis- 
tence of suitable inverse operators have to be assumed. If 
a controller structure is assumed to generate the input 
u ( . ), further assumptions have to be made to assure the 
existence of a constant control parameter vector to achieve 
the desired objective. All these indicate that considerable 
progress in nonlinear control theory will be needed to ob- 
tain rigorous solutions to the identification and control 
problems. 

= & ( k )  - 9 

e ( k  + l ) y p ( k  - i )  

1 + clLd y:  ( k  - i ) + u2  ( k  - j ) 

(') 
where 9 > 0 determines the step size. In the following 
discussions, the constant vector of plant parameters [ ao, 
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In spite of the above comments, the linear models de- 
scribed in Section 11-C-3 motivate the choice of structures 
for identifiers and controllers in the nonlinear case. It is 
in these structures that we shall incorporate neural net- 
works as described in Sections V and VI. A variety of 
considerations discussed in Section I11 reveal that both 
multilayer neural networks as well as recurrent networks, 
which are currently being extensively studied, will feature 
as subsystems in the design of identifiers and controllers 
for nonlinear dynamical systems. 

111. MULTILAYER AND RECURRENT NETWORKS 
The assumptions that have to be made to assure well 

posed problems using models suggested in Sections V and 
VI are closely related to the properties of multilayer and 
recurrent networks. In this section, we describe briefly the 
two classes of neural networks and indicate why a unified 
treatment of the two may be warranted to deal with more 
complex systems in the future. 

A.  Multilayer Networks 
A typical multilayer network with an input layer, an 

output layer, and two hidden layers is shown in Fig. 2. 
For convenience we denote this in block diagram form as 
shown in Fig. 3 with three weight matrices W ' ,  W 2 ,  and 
W 3  and a diagonal nonlinear operator r with identical sig- 
moidal elements y [i .e. ,  y(x) = 1 - e P x / l  + e-"] fol- 
lowing each of the weight matrices. Each layer of the net- 
work can then be represented by the operator 

N~[u] = r[wL] (9) 

and the input-output mapping of the multilayer network 
can be represented by 

y = N [ u ]  = r [ W 3 r [ W 2 I ' [ W 1 u ] ] ]  = N3N2NI[u] .  

(10) 

In practice, multilayer networks have been used success- 
fully in pattern recognition problems [2]-[5]. The weights 
of the network W ' ,  W 2 ,  and W 3  are adjusted as described 
in Section IV to minimize a suitable function of the error 
e between the output y of the network and a desired output 
yd. This results in the mapping function N [ U ]  realized by 
the network, mapping vectors into corresponding output 
classes. Generally a discontinuous mapping such as a 
nearest neighbor rule is used at the last stage to map the 
input sets into points in the range space corresponding to 
output classes. From a systems theoretic point of view, 
multilayer networks can be considered as versatile nonlin- 
ear maps with the elements of the weight matrices as pa- 
rameters. In the following sections we shall use the terms 
"weights" and "parameters" interchangeably. 

B. Recurrent Networks 
Recurrent networks, introduced in the works of Hop- 

field [6] and discussed quite extensively in the literature, 
provide an alternative approach to pattern recognition. 
One version of the network suggested by Hopfield con- 

hp"t Hidden Hidden Output 
pattern layer layer layer 

Fig. 2.  A three layer neural network. 

Fig. 3 .  A block diagram representation of a three layer network. 

sists of a single layer network N I ,  included in feedback 
configuration, with a time delay (Figs. 4 and 5 ) .  Such a 
network represents a discrete-time dynamical system and 
can be described by 

~ ( k  + 1)  = N I [ x ( k ) ] ,  ~ ( 0 )  = XO. 

Given an initial value xo, the dynamical system evolves 
to an equilibrium state if NI is suitably chosen. The set of 
initial conditions in the neighborhood of xo which con- 
verge to the same equilibrium state is then identified with 
that state. The term "associative memory" is used to de- 
scribe such systems. Recently, both continuous-time and 
discrete-time recurrent networks have been studied with 
constant inputs [17] .  The inputs rather than the initial 
conditions represent the patterns to be classified in this 
case. In the continuous-time case, the dynamic system in 
the feedback path has a diagonal transfer matrix with 
identical elements l / ( s  + a) along the diagonal. The 
system is then represented by the equation 

X = -U + N ~ [ x ]  + I (11) 

so that x ( t )  E R" is the state of the system at time t ,  and 
the constant vector I E W" is the input. 

C. A Unijied Approach 
In spite of the seeming differences between the two ap- 

proaches to pattern recognition using neural networks, it 
is clear that a close relation exists between them. Recur- 
rent networks with or without constant inputs are merely 
nonlinear dynamical systems and the asymptotic behavior 
of such systems depends both on the initial conditions as 
well as the specific input used. In both cases, this depends 
critically on the nonlinear map represented by the neural 
network used in the feedback loop. For example, when 
no input is used, the equilibrium state of the recurrent 
network in the discrete case is merely the fixed point of 
the mapping N I .  Thus the existence of a fixed point, the 
conditions under which it is unique, the maximum num- 
ber of fixed points that can be achieved in a given network 
are all relevant to both multilayer and recurrent networks. 
Much of the current literature deals with such problems 
[18] and for mathematical tractability most of them as- 

- 
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E 
Fig. 4. The Hopfield network. rT;;T 

Fig. 5 .  Block diagram representation of the Hopfield network. 

sume that recurrent networks contain only single layer 
networks (i.e., NI [ . I ) .  As mentioned earlier, inputs when 
they exist are assumed to be constant. Recently, two layer 
recurrent networks have also been considered [19] and 
more general forms of recurrent networks can be con- 
structed by including multilayer networks in the feedback 
loop [20]. In spite of the interesting ideas that have been 
presented in these papers, our understanding of such sys- 
tems is still far from complete. In the identification and 
control problems considered in Sections V and VI, mul- 
tilayer networks are used in cascade and feedback config- 
urations and the inputs to such models are functions of 
time. 

D. Generalized Neural Networks 
From the above discussion, it follows that the basic ele- 

ments in a multilayer network is the mapping N ,  [ . ]  = 
r [ W1 . ] , while the addition of the time delay element z -  ' 
in the feedback path (Fig. 5 )  results in a recurrent net- 
work. In fact, general recurrent networks can be con- 
structed composed of only the basic operations of 1 )  de- 
lay, 2) summation, and 3) the nonlinear operator Ni [ .  ]. 
In continuous-time networks, the delay operator is re- 
placed by an integrator. In some cases (as in (11)) mul- 
tiplication by a constant is also allowed. Hence such net- 
works are nonlinear feedback systems which consist only 
of elements NI [ . I ,  in addition to the usual operations 
found in linear systems. 

Since arbitrary linear time-invariant dynamical systems 
can be constructed using the operations of summation, 

Fig. 6 .  (a) Representation 1. (b) Representation 2 .  (c) Representation 3.  
(d) Representation 4. 

multiplication by a constant and time delay, the class of 
nonlinear dynamical systems that can be generated using 
generalized neural networks can be represented in terms 
of transfer matrices of linear systems [i.e., W ( z ) ]  and 
nonlinear operators N [ .  1 .  Fig. 6 shows these operators 
connected in cascade and feedback in four configurations 
which represent the building blocks for more complex 
systems. The superscript notation N' is used in the figures 
to distinguish between different multilayer networks in any 
specific representation. 

From the discussion of generalized neural networks, it 
follows that the mapping properties of Ni [. 3 and conse- 
quently N [  . ] (as defined in (10)) play a central role in all 
analytical studies of such networks. It has recently been 
shown in [21], using the Stone-Weierstrass theorem, that 
a two layer network with an arbitrarily large number of 
nodes in the hidden layer can approximate any continuous 
functionfE C( R', W") over a compact subset of W". This 
provides the motivation to assume that the class of gen- 
eralized networks described is adequate to deal with a 
large class of problems in nonlinear systems theory. In 
fact, all the structures used in Section V and VI for the 
construction of identification and controller models are 
generalized neural networks and are closely related to the 
configurations shown in Fig. 6. For ease of discussion in 
the rest of the paper, we shall denote the class of functions 
generated by a network containing N layers by the symbol 
3ZT,i2,. . . r i N + , .  Such a network has i, inputs, i N + l  outputs 
and ( N  - 1 ) sets of nodes in the hidden layers, each con- 
taining i 2 ,  i3, - , iN nodes, respectively. 

IV. BACK PROPAGATION IN STATIC AND DYNAMIC 
SYSTEMS 

In both static identification (e.g., pattern recognition) 
and dynamic system identification of the type treated in 
this paper, if neural networks are used, the objective is to 
determine an adaptive algorithm or rule which adjusts the 
parameters of the network based on a given set of input- 
output pairs. If the weights of the networks are considered 
as elements of a parameter vector 8 ,  the learning process 
involves the determination of the vector e* which opti- 
mizes a performance function J based on the output error. 
Back propagation is the most commonly used method for 



I I 

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. I. NO. I .  MARCH 1990 

this purpose in static contexts. The gradient of the per- 
formance function with respect to 0 is computed as V O J  
and 8 is adjusted along the negative gradient as 

e = enom - ~ V O J 1 0 = 6 , 0 m  

where 7, the step size, is a suitably chosen constant and 
Onom denotes the nominal value of 8 at which the gradient 
is computed. In this section, a diagrammatic representa- 
tion of back propagation is first introduced. Following 
this, a method of extending this concept to dynamical sys- 
tems is described and the term dynamic back propagation 
is defined. Prescriptive methods for the adjustment of 
weight vectors are suggested which can be used in the 
identification and control problems of the type discussed 
in Sections V and VI. 

In the early 1960’s, when the adaptive identification and 
control of linear dynamical systems were extensively 
studied, sensitivity models were developed to generate the 
partial derivatives of the performance criteria with respect 
to the adjustable parameters of the system. These models 
were the first to use sensitivity methods for dynamical 
systems and provided a great deal of insight into the nec- 
essary adaptive system structure [ 2 2 ] - [ 2 5 ] .  Since concep- 
tually the above problem is identical to that of determin- 
ing the parameters of neural networks in identification and 
control problems, it is clear that back-propagation can be 
extended to dynamical systems as well. 

A. A Diagrammatic Representation of Back 
Propagation 

In this section we introduce a diagrammatic represen- 
tation of back propagation. While the diagrammatic and 
algorithmic representations are informationally equiva- 
lent, their computational efficiency is different since the 
former preserves information about topological and geo- 
metric relations. In particular, the diagrammatic represen- 
tation provides a better visual understanding of the entire 
process of back propagation, lends itself to modifications 
which are computationally more efficient and suggests 
novel modifications of the existing structure to include 
other functional extensions. 

In the three layered network shown in Fig. 2 ,  U‘ A [ U , ,  

U2, * * , U,] denotes the input pattern vector while y T  
2 [ V I ,  Y 2 ,  - * * , y , ]  is the output vector. v T  [ U , ,  v2, 
. . .  , up] and z T  42 [ z , ,  z 2 ,  - * , z y ]  are the outputs at 
the first and the second hidden layers, respectively. 
{ w ~ } , , ~ , ,  { w ~ i } y x p  and { w ; } , ~ ~  are the weight matrices 
associated with the three layers as shown in Fig. 2 .  The 
vectors V E Rp, Z E Ry and 7 E Rm are as shown in Fig. 2 
with y(i7;) = vi, Y(Zk)  = zk and y ( T I )  = yl where Vi ,  Z k ,  
and j$ are elements of i7, Z and 7 respectively. If y i  = 
[ Y d l ,  Y d 2 ,  * * ’ , yd,] is the desired output vector, the out- 
put error vector for a given input pattern U is defined as e 
2 y - yd. The performance criterion J is then defined as 

where the summation is carried out over all patterns in a 
given set S. If the input patterns are assumed to be pre- 
sented at each instant of time, the performance criterion 
J may be interpreted as the sum squared error over an 
interval of time. It is this interpretation which is found to 
be relevant in dynamic systems. In the latter case, the 
inputs and outputs are time sequences and the perfor- 
mance criterion J has the form ( 1 / T )  - T +  I e2( i ) ,  
where T i s  a suitably chosen integer. 

While strictly speaking the adjustment of the parame- 
ters should be carried out by determining the gradient of 
J in parameter space, the procedure commonly followed 
is to adjust it at every instant based on the error at that 
instant and a small step size 7. If 8, represents a typical 
parameter, de/dt9, has to be determined to compute the 
gradient as er ( ae / 30,). The back propagation method is 
a convenient method of determining this gradient. 

Fig. 7 shows the diagrammatic representation of back 
propagation for the three layer network shown in Fig. 2 .  
The analytical method of deriving the gradient is well 
known in the literature and will not be repeated here. Fig. 
7 merely shows how the various components of the gra- 
dient are realized. In our example, it is seen that signals 
U, U ,  and z and y’(V), y’(Z), and y’( L), as well as the 
error vector, are used in the computation of the gradient 
(where y’(x) is the derivative of y(x )  with respect to x ) .  
qm, p q ,  and np multiplications are needed to compute the 
partial derivatives with respect to the elements of W 3 ,  W 2 ,  
and W’ , respectively. The structure of the weight matrices 
in the network used to compute the derivatives is seen to 
be identical to that in the original network while the signal 
flow is in the opposite direction, justifying the use of the 
term “back propagation. ” For further details regarding 
the diagrammatic representation, the reader is referred to 
[26]  and [ 2 7 ] .  The advantages of the diagrammatic rep- 
resentation mentioned earlier are evident from Fig. 7.  
More relevant to our purpose is that the same represen- 
tation can be readily modified for the dynamic case. In 
fact, the diagrammatic representation was used exten- 
sively in all the simulation studies described in Sections 
V and VI. 

B. Dynamic Back Propagation 

In a causal dynamical system the change in a parameter 
at time k will produce a change in the output y ( t )  for all 
t 1 k.  For example, given a nonlinear dynamical system 
x ( k  + 1 )  = + [ x ( k ) ,  u ( k ) ,  01; y ( k )  = q [ x ( k ) ]  where 
t9 is a parameter, U is the input and x is the state vector 
defined in (3), the partial derivative of y ( k )  with respect 
to t9 can be obtained by solving the linear state equations 

z ( k  + 1) = A ( k ) z ( k )  + ~ ( k ) ,  z (k0)  = 0 

w ( k )  = C ( k ) z ( k )  (12) 

where z ( k )  = dx(k) /dO E V, A ( k )  = + x ( k )  E PYX“, 
v ( k )  = a 0 ( k )  E ‘El’’, w ( k )  = d y ( k ) / d O  E R” and C ( k )  



NARENDRA A N D  PARTHASARATHY: IDENTIFICATION A N D  CONTROL OF DYNAMICAL SYSTEMS I 1  

mult,plications 

- V w , J  - V w J  - V w J  

Fig. 7 .  Architecture for back propagation 

= \k, ( k )  E Rm '. +, and \k, are Jacobian matrices and 
the vector represents the partial derivative of + with 
respect to 8. Equation (12) represents the linearized equa- 
tions of the nonlinear system around the nominal trajec- 
tory and input. If A ( k ) ,  v(k), and C ( k )  can be com- 
puted, w ( k ) ,  the partial derivative of y with respect to e 
can be obtained as the output of a dynamic sensitivity 
model. 

In the previous section, generalized neural networks 
were defined and four representations of such networks 
with dynamical systems and multilayer neural networks 
connected in series and feedback were shown in Fig. 6. 
Since complex dynamical systems can be expressed in 
terms of these four representations, the back-propagation 
method can be extended to such systems if the partial de- 
rivative of the outputs with respect to the parameters can 
be determined for each of the representations. In the fol- 
lowing we indicate briefly how (12) can be specialized to 
these four cases. In all cases it is assumed that the partial 
derivative of the output of a multilayer neural network 
with respect to one of the parameters can be computed 
using static back propagation and can be realized as the 
output of the netwark in Fig. 7. 

In representation 1 ,  the desired output Yd ( k )  as well as 
the error e ( k )  2 y(k)  - yd(k) are functions of time. 
Representation 1 is the simplest situation that can arise in 
dynamical systems. This is because 

where 0, is a typical parameter of the network N. Since 
du/aOj can be computed at every instant using static back 
propagation, de ( k )  /dej can be realized as the output of a 
dynamical system W ( z )  whose inputs are the partial de- 
rivatives generated. 

In representation 2, the determination of the gradient is 
rendered more complex by the presence of neural network 
N' . If 0, is a typical parameter of N I ,  the partial derivative 

ae (k)/ae, is computed by static back propagation. How- 
ever, if 0, is a typical parameter of N2 

ay, - c ay1 au/ - ae, / av, ae,' 
Since av/ae, can be computed using the method de- 
scribed in representation l and ayl/av can be obtained by 
static back propagation, the product of the two yield the 
partial derivative of the signal yI with respect to the pa- 
rameter 0,. 

Representation 3 shows a neural network connected in 
feedback with a transfer matrix W ( z ) .  The input to the 
nonlinear feedback system is a vector U (k ) .  If 0, is a typ- 
ical parameter of theneural letwork, the aim is to deter- 
mine the derivatives ay,(k)/aO, for i  = 1, 2, * * * , m and 
all k 2 0. We observe here for_the first time a situation 
not encountered earlier, in t h g  ayI ( k)_/ae, is the solution 
of a difference equation, i.e., ayI (k)/ae, is affected by its 
own past values 

In (13), ay/aej is a vector and aN[ v] /au  and aN[ u]/aOj 
are the Jacobian matrix and a vector, respectively, which 
are evaluated around the nominal trajectory. Hence it rep- 
resecs a linearized difference equation in the variables 

puted at every instant of time, the desired partial deriva- 
tives can be generated as the output o_f a d_ynamical system 
shown in Fig. 8(a) (the bar notation ay/aOj is used in (13) 
to distinguish between ay/%, and aN[ v]/aej). 

In the final representation, the feedback system is pre- 
ceded by a neural network N2. The presence of N2 does 
not affect the computation of the partial derivatives of the 
output with respect to the parameters of NI. However, if 
0, is a typical parameter of N2, it can be shown that ay/aej 
can be obtained as 

&/aej. Since aN[v] /au  and aN[v]/dej can be com- 

or alternately it can be represented as the output of the 
dynamical system shown in Fig. 8(b) whose inputs can be 
computed at every instant of time. 

In all the problems of identification and control that we 
will be concerned with in the following sections, the ma- 
trix W ( z )  is diagonal and consists only of elements of the 
form (i.e., a delay of di units). Further since dynamic 
back propagation is considerably more involved than static 
back propagation, the structure of the identification 
models is chosen, wherever possible, so that the latter can 
be used. The models of back propagation developed here 
can be applied to general control problems where neural 
networks and linear dynamical systems are interconnected 
in arbitrary configurations and where static back propa- 
gation cannot be justified. For further details the reader is 
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U 

(a) (b) 
Fig. 8. (a) Generation of gradient in representation 3 .  (b) Generation of 

gradient in representation 4. 

referred to [27]. A paper based on [27] but providing de- 
tails concerning the implementation of the algorithms in 
practical applications is currently under preparation. 

V. IDENTIFICATION 

As mentioned in Section 111, the ability of neural net- 
works to approximate large classes of nonlinear functions 
sufficiently accurately make them prime candidates for use 
in dynamic models for the representation of nonlinear 
plants. The fact that static and dynamic back-propagation 
methods, as described in Section IV, can be used for the 
adjustment of their parameters also makes them attractive 
in identifiers and controllers. In this section four models 
for the representation of SISO plants are introduced which 
can also be generalized to the multivariable case. Follow- 
ing this, identification models are suggested containing 
multilayer neural networks as subsystems. These models 
are motivated by the models which have been used in the 
adaptive systems literature for the identification and con- 
trol of linear systems and can be considered as their gen- 
eralization to nonlinear systems. 

A .  Characterization 

The four models of discrete-time plants introduced here 
can be described by the following nonlinear difference 
equations: 

Model I: y , ( k  + 1 )  
n - l  

= C a i y p ( k  - i )  
i = O  

Model IV: y p ( k  + 1 )  

=f [y , (k ) ,  Y p ( k  - I ) ,  * * . 9 Y p ( k  - n + 1); 

u ( k ) ,  u ( k  - I ) ,  , u ( k  - m + I ) ]  

( 1 4 )  
where [ U  ( k ) ,  yp  ( k ) ]  represents the input-output pair of 
the SISO plant at time k ,  and m I n. The block diagram 
representation of the various models are shown in Fig. 9. 
The functions f :  P n  -+ L{ in Models I1 and 111 and 
f : R n + m  -+ R in Model IV, and g : W m  + R in ( 1 4 )  are 
assumed to be differentiable functions of their arguments. 
In all the four models, the output of the plant at the time 
k + 1 depends both on its past n values y p  ( k  - i ) ( i  = 
0,  1, - - , n - 1 )  as well as the past m values of the 
input u ( k  - j  ) ( j  = 0 ,  1 ,  * , m - 1 ) .  Thedependence 
on the past values y p  ( k  - i ) is linear in Model I while in 
Model I1 the dependence on the past values of the input 
U ( k  - j ) is assumed to be linear. In Model 111, the non- 
linear dependence of yp  ( k  + 1 ) on yp  ( k  - i ) and u ( k  - 
j ) is assumed to be separable. It is evident that Model IV 
in which yp ( k  + 1 ) is a nonlinear function of y p  ( k  - i ) 
and u ( k  - j ) subsumes Models 1-111. If a general non- 
linear SISO plant can be described by an equation of the 
form (3) and satisfies the stringent observability condition 
discussed in Section 11-C-4, it can be represented by such 
a model. In spite of its generality, Model IV is, however, 
analytically the least tractable and hence for practical ap- 
plications some of the other models are found to be more 
attractive. For example, as will be apparent in the follow- 
ing section, Model I1 is particularly suited for the control 
problem. 

From the results given in Section 111, it follows that 
under fairly weak conditions on the functionfand/or g in 
(14), multilayer neural networks can be constructed to ap- 
proximate such mappings over compact sets. We shall as- 
sume for convenience that f and/or g belong to a known 
class 3tt ,,*,. . in the domain of interest, so that the 
plant can be represented by a generalized neural network 
as discussed in Section 111. This assumption motivates the 
choice of the identification models and allows the state- 
ment of well posed identification problems. In particular, 
the identification models have the same structure as the 
plant but contain neural networks with adjustable param- 
eters. 

Let a nonlinear dynamic plant be represented by one of 
the four models described in (14). If such a plant is to be 
identified using input-output data, it must be further as- 
sumed that it has bounded outputs for the class of per- 
missible inputs. This implies that the model chosen to 
represent the plant also enjoys this property. In the case 
of Model I ,  this implies that the roots of the characteristic 
equation zn - a0zn-' - - - ana2z - an- l  = o lie 
in the interior of the unit circle. In the other three cases 
no such simple algebraic conditions exist. Hence the study 
of the stability properties of recurrent networks contain- 
ing multilayer networks represents an important area of 
research. 
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Fig. 9. Representation of SISO plants. (a) Model I .  (b) Model 11. (c)  Model 
111. (d) Model 1V. 

The models described thus far are for the representation 
of discrete-time plants. Continuous-time analogs of these 
models can be described by differential equations, as 
stated in Section 11. While we shall deal exclusively with 
discrete-time systems, the same methods also carry over 
to the continuous time case. 

B. Identijication 

The problem of identification, as described in Section 
11-C, consists of setting up a suitably parameterized iden- 
tification model and adjusting the parameters of the model 
to optimize a performance function based on the error be- 
tween the plant and the identification model outputs. Since 
the nonlinear functions in the representation of the plant 
are assumed to belong to a known class 37. . . . , I N + ,  in 
the domain of interest, the structure of the identification 
model is chosen to be identical to that of the plant. By 

assumption, weight matrices of the neural networks in the 
identification model exist so that, for the same initial con- 
ditions, both plant and model have the same output for 
any specified input. Hence the identification procedure 
consists in adjusting the parameters of the neural net- 
works in the model using the method described in Section 
IV based on the error between the plant and model out- 
puts. However, as shown in what follows, suitable pre- 
cautions have to be taken to ensure that the procedure re- 
sults in convergence of the identification model parameters 
to their desired values. 

1. Parallel Identijication Model: Fig. 10(a) shows a 
plant which can be represented by Model I with n = 2 
and m = 1. To identify the plant one can assume the 
structure of the identification model shown in Fig. 10(a) 
and described by  the equation 
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(a) (b) 
Fig. 10. (a) Parallel identification model. (b) Series-parallel identification 

model. 

As mentioned in Section 11-C-3, this is referred to as a 
parallel model. Identification then involves the estimation 
of the parameters &* as well as the weights of the neural 
network using dynamic back propagation based on the er- 
ror e ( k )  between the model output j p ( k )  and the actual 

From the assumptions made earlier, the plant is 
bounded-input bounded-output (BIBO) stable in the pres- 
ence of an input (in the assumed class). Hence, all the 
signals in the plant are uniformly bounded. In contrast to 
this, the stability of the identification model as described 
here with a neural network cannot be assured and has to 
be proved. Hence if a parallel model is used, there is no 
guarantee that the parameters will converge or that the 
output error will tend to zero. In spite of two decades of 
work, conditions under which the parallel model param- 
eters will converge even in the linear case are at present 
unknown. Hence, for plant representations using Models 
I-IV, the following identification model, known as the 
series-parallel model, is used. 

2. Series-Parallel Model: In contrast to the parallel 
model described above, in the series-parallel model the 
output of the plant (rather than the identification model) 
is fed back into the identification model as shown in Fig. 
10(b). This implies that in this case the identification 
model has the form 

output yp ( k ) .  

j p ( k  + 1)  = &oyp(k)  + &lyp(k  - 1) + N [ u ( k ) ] .  

We shall use the same procedure with all the four models 
described earlier. The series-parallel identification model 
corresponding to a plant represented by Model IV has the 
form shown in Fig. 11. TDL in Fig. 11 denotes a tapped 
delay line whose output vector has for its elements the 
delayed values of the input signal. Hence the past values 
of the input and the output of the plant form the input 
vector to a neural network whose output j p ( k )  corre- 
sponds to the estimate of the plant output at any instant 
of time k .  The series-parallel model enjoys several advan- 

Nonlinear 

Neural 
network 

Fig. 11. Identification of nonlinear plants using neural networks 

tages over the parallel model. Since the plant is assumed 
to be BIBO stable, all the signals used in the identification 
procedure (i.e., inputs to the neural networks) are 
bounded. Further, since no feedback loop exists in the 
model, static back propagation can be used to adjust the 
parameters reducing the computational overhead substan- 
tially. Finally, assuming that the output error tends to a 
small value asymptotically so that yp ( k )  = j p  ( k ) ,  the se- 
ries-parallel model may be replaced by a parallel model 
without serious consequences. This has practical impli- 
cations if the identification model is to be used off line. 
In view of the above considerations the series-parallel 
model is used in all the simulations in this paper. 

C. Simulation Results 
In this section simulation results of nonlinear plant 

identification using the models suggested earlier are pre- 
sented. Six examples are presented where the prior infor- 
mation available dictates the choice of one of the Models 
I-IV. Each example is chosen to emphasize a specific 
point. In the first five examples, the series-parallel model 
is used to identify the given plant and static back-propa- 
gation is used to adjust parameters of the neural networks. 
A final example is used to indicate how dynamic back 
propagation may be used in identification problems. Due 
to space limitations, only the principal results are pre- 
sented here. The reader interested in further details is re- 
ferred to [27]-129). 
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(a) (b) 
Fig. 12. Example 1: (a) Outputs of the plant and identification model when 

adaptation stops at k = 500. (b) Response of plant and identification 
model after identification using a random input. 

I .  Example I :  The plant to be identified is governed 

yp(k  + 1) = 0.3yp(k)  + 0.6yp(k - 1 )  + f [ ~ ( k ) ]  

where the unknown function has the form f ( U )  = 0 . 6  sin 
( n u )  + 0.3  sin (37ru) + 0.1 sin (5nu) .  From (15), it is 
clear that the unforced linear system is asymptotically sta- 
ble and hence any bounded input results in a bounded out- 
put. In order to identify the plant, a series-parallel model 
governed by the difference equation 

j p ( k  + 1) = 0.3yp(k)  + 0.6yp(k - 1 )  + N [ u ( k ) ]  
was used. The weights in the neural network were ad- 
justed at every instant of time ( Ti = 1) using static back 
propagation. The neural network belonged to the class 
X ; ,2~ ,10 ,~  and the gradient method employed a step size 
of 17 = 0.25. The input to the plant and the model was a 
sinusoid U ( k )  = sin (2nk/250). As seen from Fig. 12(a), 
the output of the model follows the output of the plant 
almost immediately but fails to do so when the adaptation 
process is stopped at k = 500, indicating that the identi- 
fication of the plant is not complete. Hence the identifi- 
cation procedure was continued for 50 000 time steps 
using a random input whose amplitude was uniformly dis- 
tributed in the interval [ - 1, 1 ] at the end of which the 
adaptation was terminated. Fig. 12(b) shows the outputs 
of the plant and the trained model. The nonlinear function 
in the plant in this case is f [ U ]  = u3 + 0 . 3 ~ ~  - 0.4~. 
As can be seen from the figure, the identification error is 
small even when the input is changed to a sum of two 
sinusoids U ( k )  = sin (2nk/250) + sin (2nk/25) at k = 
250. 

2. Example 2: The plant to be identified is described 
by the second-order difference equation 

where 

by the difference equation 

(15)  

Yp(k + 1 )  = f  [Yp(k) ,Yp(k  - I ) ]  + 

f [ Y p ( k ) ,  Yp(k - I ) ]  

This corresponds to Model 11. A series-parallel identifier 
of the type discussed earlier is used to identify the plant 
from input-output data and is described by the equation 

j p ( k  + 1) = N[Yp(kLYp(k  - 01 + u(k) (17) 

where N is a neural network with N E  The iden- 
tification process involves the adjustment of the weights 
of N using back propagation. 

Some prior information concerning the input-output 
behavior of the plant is needed before identification can 
be undertaken. This includes the number of equilibrium 
states of the unforced system and their stability proper- 
ties, the compact set U to which the input belongs and 
whether the plant output is bounded for this class of in- 
puts. Also, it is assumed that the mapping N can approx- 
imate f over the desired domain. 

a .  Equilibrium states of the unforced system: The 
equilibrium states of the unforced system y p ( k  + 1)  = 
f [ y , ( k ) ,  y p ( k  - l ) ]  withfas defined in (16)  are (0, 0)  
and (2 ,  2 ) ,  respectively, in the state space. This implies 
that while in equilibrium without an input, the output of 
the plant is either the sequence { 0 } or the sequence { 2 } . 
Further, for any input 1 U ( k )  1 I 5, the output of the plant 
is uniformly bounded for initial conditions (0, 0)  and (2,  
2 )  and satisfies the inequality I yp ( k )  1 I 13. 

Assuming different initial conditions in the state space 
and with zero input, the weights of the neural network 
were adjusted so that the error e (  k + 1 )  = y p ( k  + 1 )  - 
N [  y p ( k ) ,  y p ( k  - 1 )]  is minimized. When the weights 
converged to constant values, the equation j p  ( k  + 1 ) = 
N [  j p ( k ) ,  j p  ( k  - 1 ) ]  was simulated for initial conditions 
within a radius of 4. The identified system was found to 
have the same trajectories as the plant for the same initial 
conditions. The behavior of the plant and the identified 
model for different initial conditions are shown in Fig. 13. 
It must be emphasized here that in practice the initial con- 
ditions of the plant cannot be chosen at the discretion of 
the designer and must be realized only by using different 
inputs to the plant. 

b.  Identijication: While the neural network realized 
above can be used in the identification model, a separate 
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(a) (b) 
Fig. 13. Example 2: Behavior of the unforced system. (a) Actual plant. 

(b) Identified model of the plant. 

u- mtn[h k/25] 
simulation was carried out using both inputs and outputs 
and a series-parallel model. The input U ( k )  was assumed 
to be an i.i.d. random signal uniformly distributed in the 
interval [ -2, 21 and a step size of 9 = 0.25 was used in 
the gradient method. The weights in the neural network 
were adjusted at intervals of five steps using the gradient 
of E t = , - ,  e 2 ( i  ). Fig. 14 shows the outputs of the plant 
and the model after the identification procedure was ter- 
minated at k = 100 000. 

3. Example 3: In Example 2,  the input is seen to occur 
linearly in the difference equation describing the plant. In 

4 -  

this example the plant is described by Model IIIand has 
the form 

-2 
0 2 o D u ) M ) w  

Fig. 14. Example 2: Outputs of the plant and the identification model. 

which corresponds t o f [  y p ( k ) ]  = y p ( k ) / (  1 + y P ( k l 2 )  
and g [ u ( k ) ]  = u 3 ( k )  in (14). A series-parallel identifi- 
cation model consists of two neural networks Nf and Ng 
belonging to 32:,20, and can be described by the differ- 
ence equation 

The estimates f and g are obtained by using neural net- 
works Nf and N g .  The weights in the neural networks were 
adjusted at every instant of time using a step size of 7 = 
0.1 and was continued for 100 000 time steps. Since the 
input was a random input in interval [ -2, 21, g approx- 
imates g only over this interval. Since this in turn re!ults 
in the variation of y p  over the interval [ - 10, lo ] ,  f ap- 
proximates f over the latter interval. The functions f and 
g as well as f and g over their respective domains are 
shown in Fig. 15(a) and (b). In Fig. 15(c), the outputs of 
the plant as well as the identification model for an input 
U ( k )  = sin (2ak/25)  + sin (2nk/10) are shown and are 
seen to be indistinguishable. 

4. Example 4: The same methods used for identifica- 
tion of plants in examples 1-3 can be used when the un- 
known plants are known to belong to Model IV. In this 

example, the plant is assumed to be of the form 

Yp(k + 1)  = f [ Y p ( k ) , Y , ( k  - 

Y p ( k  - 2 ) ,  4% u(k - 111 

where the unknown function f has the form 

In the identification model, a neural network N belonging 
to the class '3Z:.20, I is used to approximate the function 
f. Fig. 16 shows the output of the plant and the model 
when the identification procedure was carried out for 
100 000 steps using a random input signal uniformly dis- 
tributed in the interval [ - 1, 1 ] and a step size of 9 = 
0.25. As mentioned earlier, during the identification pro- 
cess a series-parallel model is used, but after the identi- 
fication process is terminated the performance of the 
model is studied using a parallel model. In Fig. 16, the 
input to the plant and the identified model is given by 
u(k) = sin (27rk/250) for k I 500 and u(k) = 0.8 sin 
(2ak/250) + 0.2 sin (2nk/25)  for k > 500. 

5. Example 5: In this example, it is shown that the 
same methods used to identify SISO plants can be used to 
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Fig. 15. Example 3: (a) Plots of the functions f and f .  (b) Plots of the 
functions g and g. (c) Outputs of the plant and the identification model. 
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Fig. 16. Example 4: Identification of Model IV. 

identify MIMO plants as well. The plant is described by 
the equations 

J 

This corresponds to the multivariable version of Model 
11. The series-parallel identification model consists of two 

I 

17 

neural networks NI and N2 and is described by the equa- 
tion 

The identification procedure was carried out for 100 000 
time steps using a step size of 7 = 0.1 with random inputs 
uI (k) and u2 (k) uniformly distributed in the interval [ - 1, 
1 1. The responses of the plant and the identification model 
for a vector input [sin (2ak/25) ,  cos (2ak/25)IT are 
shown in Fig. 17. 

Comment: In examples 1, 3, 4, and 5 the adjustment 
of the parameters was carried out by computing the gra- 
dient of e ( k )  at instant k while in example 2 adjustments 
were based on the gradient of an error function evaluated 
over an interval of length 5. While from a theoretical point 
of view it is preferable to use a larger interval to define 
the error function, very little improvement was observed 
in the simulations. This accounts for the fact that in ex- 
amples 3, 4, and 5 adjustments were based on the instan- 
taneous rather than an average error signal. 

6. Example 6: In examples 1-5, a series-parallel iden- 
tification model was used and hence the parameters of the 
neural networks were adjusted using the static back-prop- 
agation method. In this example, we consider a simple 
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Fig. 17. Example 5: Responses of the plant and the identification model. 

1 

0 

-3 

Fig. 18. Example 6: (a) Outputs of plant and identification model. (b)f[u] 
and N [  U ]  for u E [ - 1, 1 1. 

first order nonlinear system which is identified using the 
dynamic back-propagation method discussed in Section 
IV. The nonlinear plant is described by the difference 
equation 

Yp(k + 1) = 0.8YJk) + f [ u ( k ) I  

where the functionf[u] = ( U  - 0.8)u(u  + 0.5) is un- 
known. However, it is assumed that f can be approxi- 
mated to the desired degree of accuracy by a multilayer 
neural network. 

The identification model used is described by the dif- 
ference equation 

j p ( k  + 1) = 0.8jp(k) + N [ u ( k ) ]  

and the neural network belonged to the class '32~.20.10,1. 
The model chosen corresponds to representation 1 in Sec- 
tion IV (refer to Fig. 6(a)). The objective is to adjust a 
total of 261 weights in the neural network so that e ( k )  
= j p ( k )  - yp(k) + 0 asymptotically. Defining the per- 
formance criterion to be minimized as J = ( 1 / 2 T )  
cf,k- T +  e 2 (  i ), the partial derivative of with respect 
to a weight 8, in the neural network can be computed as 
( a J / M , )  = ( l / T )  C f = k - T + I  e ( i )  ( a e ( i ) / M , ) .  The 
quantity ( d e  ( i  ) / d e j  ) can be computed in a dynamic fash- 

a 

ion using the method discussed in Section IV and used in 
the following rule to update 8: 

where 17 is the step size in the gradient procedure. 
Fig. 18(a) shows the outputs of the plant and the iden- 

tification model when the weights in the neural network 
were adjusted after an interval of 10 time steps using a 
step size of 7 = 0.01. The input to the plant (and the 
model) was u ( k )  = sin (2rk /25) .  In Fig. 18(b), the 
functionf(u) = ( U  - 0.8)u(u  + 0 . 5 ) ,  as well as the 
function realized by the three layer neural network after 
50 000 steps for U E [ - 1, 11, are shown. As seen from 
the figure, the neural network approximates the given 
function quite accurately. 

VI. CONTROL OF DYNAMICAL SYSTEMS 
As mentioned in Section 11, for the sake of mathemat- 

ical tractability most of the effort during the past two dec- 
ades in the model reference adaptive control theory has 
been directed towards the control of linear time-invariant 
plants with unknown parameters. Much of the theoretical 
work in the late 1970's was aimed at determining adaptive 
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laws for the adjustment of the control parameter vector 
8 ( k )  which would result in stable overall systems. In 1980 
[30]-[33], it was conclusively shown that for both dis- 
crete-time and continuous-time systems, such stable 
adaptive laws could be determined provided that some 
prior information concerning the plant transfer function 
was available. Since that time much of the research in the 
area has been directed towards determining conditions 
which assure the robustness of the overall system under 
different types of perturbations. 

In contrast to the above, very little work has been re- 
ported on the global adaptive control of plants described 
by nonlinear difference or differential equations. It is in 
the control of such systems that we are primarily inter- 
ested in this section. Since, in most problems, very little 
theory exists to guide the analysis, one of the aims is to 
indicate precisely how the nonlinear control problem dif- 
fers from the linear one and the nature of the theoretical 
questions that have to be answered. 

Algebraic and Analytic Parts of Adaptive Control Prob- 
lems: In conventional adaptive control theory, two stages 
are generally distinguished in the adaptive process. In the 
first, referred to as the algebraic part, it is first shown 
that the controller has the necessary degrees of freedom 
to achieve the desired objective. More precisely, if some 
prior information regarding the plant is given, it is shown 
that a controller parameter vector O* exists for every value 
of the plant parameter vector p, so that the output of the 
controlled plant together with the controller approaches 
the output of the reference model asymptotically. The an- 
alytic part of the problem is then to determine stable 
adaptive laws for adjusting 8 ( k )  so that limk,, O(k)  = 
O* and the output error tends to zero. 

Direct and Indirect Control: For over 20 years, two 
distinct approaches have been used [ l ]  to control a plant 
adaptively. These are 1) direct control and 2) indirect 
control. In direct control, the parameters of the controller 
are directly adjusted to reduce some norm of the output 
error. In indirect control, the parameters of the plant are 
estimated as the elements of a vector b ( k )  at any instant 
k and the parameter vector 0 ( k )  of the controller is chosen 
assuming that p ( k )  represents the true value p of the plant 
parameter vector. Even when the plant is assumed to be 
linear and time invariant, both direct and indirect adap- 
tive control result in overall nonlinear systems. Figs. 19 
and 20 represent the structure of the overall adaptive sys- 
tem using the two methods for the adaptive control of a 
linear time-invariant plant [ 13.  

A. Adaptive Control of Nonlinear Systems Using Neural 
Networks 

For a detailed treatment of direct and indirect control 
systems the reader is referred to [ 13.  The same approaches 
which have proved successful for linear plants can also be 
attempted when nonlinear plants have to be adaptively 
controlled. The structure used for the identification model 
as well as the controller are strongly motivated by those 
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Fig. 19. Direct adaptive control. 
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Fig. 20. Indirect adaptive control. 

used in the linear case. However, in place of the linear 
gains, nonlinear neural networks are used. 

Methods for identifying nonlinear plants using delayed 
values of both plant input and output were discussed in 
the previous section and Fig. 1 1  shows a general identi- 
fication model. Fig. 21 shows a controller whose output 
is the control input to the plant and whose inputs are the 
delayed values of the plant input and output, respectively. 

1. Indirect Control: At present, methods for directly 
adjusting the control parameters based on the output error 
(between the plant and the reference model outputs) are 
not available. This is because the unknown nonlinear plant 
in Fig. 21 lies between the controller and the output error 
e,. Hence, until such methods are developed, adaptive 
control of nonlinear plants has to be carried out using in- 
direct methods. This implies that the methods described 
in Section V have to be first used on line to identify the 
input-output behavior of the plant. Using the resulting 
identification model, which contains neural networks and 
linear dynamical elements as subsystems, the parameters 
of the controller are adjusted. This is shown in Fig. 22. 
It is this procedure of identification followed by control 
that is adopted in this section. Dynamic back propagation 
through a system consisting of only neural networks and 
linear dynamic elements was discussed in Section IV to 
determine the gradient of a performance index with re- 
spect to the adjustable parameters of a system. Since iden- 
tification of the unknown plant is carried out using only 
neural networks and tapped delay lines, the identification 
model can be used to compute the partial derivatives of a 
performance index with respect to the controller parame- 
ters. 

B. Simulation Results 
The procedure adopted to adaptively control a nonlin- 

ear plant depends largely on the prior information avail- 
able regarding the unknown plant. This includes knowl- 
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Fig. 22 .  Indirect adaptive control using neural networks. 

edge of the number of equilibrium states of the unforced 
system, their stability properties, as well as the amplitude 
of the input for which the output is also bounded. For 
example, if the plant is known to have a bounded output 
for all inputs U belonging to some compact set U, then 
the plant can be identified off line using the methods out- 
lined in Section V. During identification, the weights in 
the identification model can be adjusted at every instant 
of time ( I;. = 1 ) or at discrete time intervals ( 7;. > 1 ). 
Once the plant has been identified to the desired level of 
accuracy, control action can be initiated so that the output 
of the plant follows the output of a stable reference model. 
It must be emphasized that even if the plant has bounded 
outputs for bounded inputs, feedback control may result 
in unbounded solutions. Hence, for on-line control, iden- 
tification and control must proceed simultaneously. The 
time intervals Ti and T,, respectively, over which the 
identification and control parameters are to be updated 
have to be judiciously chosen in such a case. 

Five examples, in which nonlinear plants are adaptively 
controlled, are included below and illustrate the ideas dis- 
cussed earlier. As in the previous section, each example 
is chosen to emphasize a specific point. 

I. Example 7: We consider here the problem of con- 
trolling the plant discussed in example 2 which is de- 
scribed by the difference equation 

Yp(k + 1) =f[Yp(k),Yp(k - 1>3 + U(k) 

where the function 

f[Yp(k) ,  Yp(k - 01 

is assumed to be unknown. A reference model is de- 
scribed by the second-order difference equation 

ym(k + 1 )  = 0.6ym(k) + 0.2ym(k - 1) + r ( k )  

where r ( k )  is a bounded reference input. If the output 
error e, ( k )  is defined as e, ( k )  = yp (k) - ym (k), the aim 
of control is to determine a bounded control input u ( k )  
such that limk, e,( k )  = 0. If the function f [ . ] in (19) 
is known, it follows directly that at stage k, U ( k )  can be 
computed from a knowledge of yp(k) and its past values 
as 

a 

U(k) = -f[Yp(k), Yp(k - I ) ]  + 0.6Yp(k) 

+ 0.2yp(k - 1 )  + r ( k )  (20) 

resulting in the error difference equation e, ( k  + 1 ) = 
0.6eC(k) + 0.2eC(k - 1). Since the reference model is 
asymptotically stable, it follows that limk,, e , ( k )  = 0 
for arbitrary initial conditions. However, sincef [ . ] is un- 
known, it is estimated on line asfas  discussed in example 
2 using a neural network N and the series-parallel method. 

The control input to the plant at any instant k is com- 
puted using N [  . ] in place off as 

U@) = - N [  Yp(kL Yp(k - I ) ]  + 0.6Yp(k) 

+ 0.2yp(k - 1 )  + r ( k ) .  (21) 
This results in the nonlinear difference equation 

Y,(k + 1) 

=f[Yp(k) ,  Yp(k - I ) ]  - N[Yp(kL Yp(k - 113 

+ 0.6yp(k) + 0.2yp(k - 1) + r ( k )  (22)  

governing the behavior of the plant. The structure of the 
overall system is shown in Fig. 23. 

In the first stage, the unknown plant was identified off 
line using random inputs as described in example 2. Fol- 
lowing this, (21) was used to generate the control input. 
The response of the controlled system with a reference 
input r ( k )  = sin ( 2 ~ k / 2 5 )  is shown in Fig. 24(b). 

In the second stage, both identification and control were 
implemented simultaneously using different values of Ti 
and T,. The asymptotic response of the system when iden- 
tification and control start at k = 0 with T, = T, = 1 is 
shown in Fig. 25(a). Since it is desirable to adjust the 
control parameters at a slower rate than the identification 
parameters, the experiment was repeated with 7;. = 1 and 
T, = 3 and is shown in Fig. 25(b). Since the identification 
process is not complete for small values of k, the control 
can be theoretically unstable. However, this was not ob- 
served in the simulations. If the control is initiated at time 
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t I 

(a) (b) 
Fig. 24. Example 7: (a) Response for no control action. (b) Response for 

r = sin ( 2 i r k / 2 5 )  with control. 

Fig. 23. Example 7: Structure of the overall system. 
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(a) (b) 
Fig. 25. Example 7:  (a) Response when control is initiated at k = 0 with 

T, = T, = I .  (b) Response when control is initiated at k = 0 and T, = 
1 and T, = 3.  

k = 0 using nominal values of the parameters of the neural 
network with Ti = T, = 10, the output of the plant was 
seen to increase in an unbounded fashion as shown in Fig. 
26. 

The simulations reported above indicate that for stable 
and efficient on-line control, the identification must be suf- 
ficiently accurate before control action is initiated and 
hence T, and T, should be chosen with care. 
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2. Example 8: The unknown plant in this case corre- 
sponds to Model I1 and can be described by a difference 
equation of the form 

Yp(k + 1 )  

It is assumed that the parameters Pi ( j = 0 ,  1, * , m  
- 1 )  are unknown, but that Po is nonzero with a known 
sign. The specific plant used in the simulation study was 

5Yp(k)Yp(k - 1) 
1 + y ; ( k )  + y ; ( k  - 1 )  + y ; ( k  - 2 )  Yp(k + 1) = 

+ u ( k )  + 0.8u(k - 1 ) .  ( 2 3 )  

The output of the stable reference model is described by 

y m ( k  + 1) = 0 .32ym(k)  + 0.64ym(k - 1) 

- 0 .5ym(k  - 2 )  + r ( k )  

where r is the uniformly bounded reference input. The 
responses of the reference model and the plant when r (  k )  
= u ( k )  = sin ( 2 ? r k / 2 5 )  are shown in Fig. 27.  While the 
output of the reference model is also a sinusoid of the 
same frequency, the response of the plant is seen to con- 
tain higher harmonics. It is assumed that sgn Po = + 1  
and that Po 2 0.1. This enables a projection type algo- 
rithm to b: used in the identification procecure so that the 
estimate Po of Po satisfies the inequality Po 2 0.1. The 
control input any instant of time k is generated as 

- B l u ( k  - 1) + 0 . 3 2 y p ( k )  + 0.64yp(k  - 1) 

- 0 .5yp(k  - 2 )  + r ( k ) ] .  ( 2 4 )  
In Fig. 28 ,  the plant is identified over a period of 50 000 
time steps using an input which is random and distributed 
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Fig. 27. Example 8: Responses of the reference model and the plant when 
no control action is taken. 

uniformly over the interval [ - 2 ,  21.  At the end of this 
interval, the control is implemented as given in (24 ) .  The 
response of the plant as well as the reference model are 
shown in Fig. 28.  In Fig. 28(a) the reference input is r ( k )  
= sin ( 2 d / 2 5 ) ,  while in Fig. 28(b) the reference input 
is r ( k )  = sin ( 2 n k / 2 5 )  + sin ( 2 x k 1 1 0 ) .  In both cases 
the control system is found to perform satisfactorily. Since 
the plant is identified over a s;fficien!ly long time with a 
general input, the parameters Po and 6, are found to con- 
verge to 1.005 and 0 .8023 ,  respectively, which are close 
to the true values of 1 and 0.8. 

In Fig. 29 the response of the controlled plant to a ref- 
erence input r ( k )  = sin ( 2 a k / 2 5 )  is shown, when iden- 
tification and control are initiated at k *= 0. Since the input 
is not sufficiently general, Bo ( k )  and PI ( k )  tend to values 
4.71 and 3.59  so that the asymptotic values of the param- 
eter errors are large. In spite of this, the output error is 
seen to tend to zero for values of k greater than 9900.  This 
example reveals that good control may be possible with- 
out good parameter identification. 

3. Example 9: In this case, the plant is described by 
the same equation as in (23 )  with 0.81.4 ( k  - 1 ) replaced 
by 1. l u  ( k  - 1 ) and the same procedure is adopted as in 
example 8 to generate the control input. It is found that 
the output error is bounded and even tends to zero while 
the control input grows in an unbounded fashion (Fig. 30). 
This is a phenomenon which is well known in adaptive 
control theory and arises due to the presence of zeros of 
the plant transfer function lying outside the unit circle. In 
the present context u ( k )  + 1. l u  ( k  - 1 ) can be zero even 
as u ( k )  = ( - 1.1 ) k  tends to 00 in an oscillatory fashion. 
The same phenomenon can also occur in systems where 
the dependence of y p  on u in nonlinear. 

4. Example 10: The control of the nonlinear multivari- 
able plant with two inputs and two outputs, discussed in 
example 5 ,  is considered in this example and the plant is 
described by (18). The reference model is linear and is 
described by the difference equations 
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Fig. 28.  Example 8: Identification followed by control. 

(a) (b) 
Fig. 29. Example 8: Initial response when control action is taken at k = 

0 with T, = T, = 1 .  (b) Asymptotic response with T, = T, = 1. 
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Fig. 30. Example 9: (a) Outputs of the reference model and the plant when 

control is initiated at k = 0. (b) The feedback control input U .  

where rl  and r2 are bounded reference inputs. The plant 
is identified as in example 5 and control is initiated after 
the identification process is complete. The responses of 
the plant as compared to the reference model for the same 
inputs are shown in Fig. 3 1. The improvement in the re- 
ponses, when the neural networks in the identification 
model are used to generate the control input to the plant 

are evident from the figure. The outputs of the controlled 
plant and the reference model are shown and indicate that 
the output error is almost zero. 

5. Example 11: In examples 7-10, the output of the 
plant depends linearly on the control input. This makes 
the computation of the latter relatively straightforward. In 
this example the plant is described by Model I11 and has 
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Fig. 31. Example 10: (a), (b) Outputs of the reference model and the plant 

when no control action is taken. (c), (d) Outputs of the reference model 
and the plant with feedback control. 

the form 

which was identified successfully in example 3 .  Choosing 
the reference model as 

ym(k + 1) = 0.6ym(k) + r ( k )  

the  aim once again is to choose u ( k )  so that l imk+m 

= u3, the control input in this case is chosen as 
Jyp(k)  -Ym(k)l I ~ ~ [ Y , I  = ~ p / ( l  + ~ ; ) a n d g [ u l  

( 2 5 )  
A 

U@) = g - ' [  -f[Y,(k)I + 0.6Yp(k) + r ( k ) ]  
n 

wherefand g-I are th,e estimates o f f  and g-I, respec- 
tively. The estimates f and t are obtained as described 
earlier using neural networks Nf and N g .  Since [ U ]  has 
been realized as the output of a neural network N,, the 
weights of a neural network N ,  E I (shown in Fig. 
32)  can be adjusted so that NR [ N,(  r )  ] = r as r (  k )  varies 
over the interval [ -4 ,4] .  The range [ - 4 , 4 ]  was chosen 
for r ( k )  since this assures that the input to the identifi- 
cation mogel varies over the same range for which the 
estimatesfand t are valid. In Fig. 33 N , [ N ,  ( r ) ]  is plot- 
ted against r and is seen to be unity over the entire range. 

The determination of N,. was carried out over 25 000 time 
steps using a random input uniformly distributed in the 
interval [ -4, 41 and a step size of = 0.01. Since the 
plant nonlinearities f and g as well as g-' have been es- 
timated using neural networks Nfi N g ,  and N,., respec- 
tively, the control input to the plant can be determined 
using ( 2 5 ) .  The output of the plant to a reference input 
r (  k )  = sin ( 2 n k / 2 5 )  + sin ( 2 n k /  10) is shown in Fig. 
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Fig. 33. Example 1 1 :  Plot of the function NR[iVc(r)]. 
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(a) (b) 
Fig. 34. Example 1 1 :  (a) Outputs of the reference model and plant without 

a feedback controller. (b) Outputs of  the reference model and plant with 
a feedback controller. 

34(a) when a feedback controller is not used; the response 
with a controller is shown in Fig. 34(b). The response in 
Fig. 34(b) is identical to that of the reference model and 
is almost indistinguishable from it. Hence, from this ex- 
ample we conclude that it may be possible in some cases 
to generate a control input to an unknown plant so that 
almost perfect model following is achieved. 

VII. COMMENTS AND CONCLUSIONS 

In this paper models for the identification and control 
of nonlinear dynamic systems are suggested. These 
models, which include multilayer neural networks as well 
as linear dynamics, can be viewed as generalized neural 
networks. In the specific models given, the delayed values 
of relevant signals in the system are used as inputs to mul- 
tilayer neural networks. Methods for the adjustment of 
parameters in generalized neural networks are treated and 
the concept of dynamic back propagation is introduced in 
this context to generate partial derivatives of a perfor- 
mance index with respect to adjustable parameters on line. 
However, in many identifiers and controllers it is shown 
that by using a series-parallel model, the gradient can be 
obtained with the simpler static back-propagation method. 

The simulation studies on low order nonlinear dynamic 
systems reveal that identification and control using the 
methods suggested can be very effective. There is every 
reason to believe that the same methods can also be used 
successfully for the identification and control of multivar- 
iable systems of higher dimensions. Hence, they should 
find wide application in many areas of applied science. 

Several assumptions were made concerning the plant 
characteristics in the simulation studies to achieve satis- 
factory identification and control. For example, in all 
cases the plant was assumed to have bounded outputs for 
the class of inputs specified. An obvious and important 
extension of the methods in the future will be to the con- 
trol of unstable systems in some compact domain in the 
state space. All the plants were also assumed to be of rel- 
ative degree unity (i.e., input at k affects the output at 
k + l ) ,  minimum phase (i.e., no unbounded input lies in 
the null space of the operator representing the plant) and 
Models I1 and I11 used in control problems assumed that 
inverses of operators existed and could be approximated. 
Future work will attempt to relax some or all of these 
assumptions. Further, in all cases the gradient method is 
used exclusively for the adjustment of the parameters of 
the plant. Since it is well known that such methods can 
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lead to instability for large values of the step size 7 ,  it is 
essential that efforts be directed towards determining sta- 
ble adaptive laws for adjusting the parameters. Such work 
is currently in progress. 

A number of assumptions were made throughout the pa- 
per regarding the plant to be controlled for the methods 
to prove successful. These include stability properties of 
recurrent networks with multilayer neural networks in the 
forward path, controllability, observability, and identifi- 
ability of the models suggested as well as the existence of 
nonlinear controllers to match the response of the refer- 
ence model. At the present stage of development of non- 
linear control theory, few constructive methods exist for 
checking the validity of these assumptions in the context 
of general nonlinear systems. However, the fact that we 
are dealing with special classes of systems represented by 
generalized neural networks should make the develop- 
ment of such methods more tractable. Hence, concurrent 
theoretical research in these areas is needed to justify the 
models suggested in this paper. 
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