Formulation of the Learning Problem
(1) Concept and function learning
X - feature space
e - concept class (collection of subsets of O)
a a ... all images of lowercase ' a '
o $n \ldots$ negative examples
$x_{1}, \ldots, x_{n} \stackrel{\text { ind }}{\sim} P$ (instances)
$P \in \rho$ (class of distributions)
$c^{*} \in 巴$ (unknown concept)
training data: $\left(X_{i}, y_{i}\right) \quad i=1, \ldots, n$

$$
\begin{aligned}
& Y_{i}=1\left\{x_{i} \in c^{*}\right\} \\
& z_{i}=\left(x_{i}, y_{i}\right) \quad \text { instance-label pair }
\end{aligned}
$$

learning alga: $Z^{n}=\left(z_{1}, \ldots, z_{n}\right) \xrightarrow{A_{n}} \bar{C}_{n} \in 巴$

$$
\begin{aligned}
A= & \left\{A_{n}\right\}_{n=1}^{\infty} \quad A_{n}:(\partial \times\{0,1\})^{n} \rightarrow 0 \\
\hat{c}_{n}=A_{n}\left(Z_{1}, \ldots, Z_{n}\right) & - \text { hypothesis returned } \\
& \quad \text { braining } \quad \text { by on } Z^{n}
\end{aligned}
$$

$$
\begin{aligned}
& X \sim P \quad\left(\text { indep of } \quad X_{1}, \ldots, x_{n}\right) \\
& \hat{y}=1_{\left\{x \in \hat{C}_{n}\right\}}
\end{aligned}
$$

Misclassification: $x \notin C^{*}, x \in \vec{C}_{n}$

$$
x \in C^{*}, \quad x \notin \hat{C}_{n}
$$

$$
\begin{aligned}
\left\{x \in x^{2}: x \in C^{*} \cap \vec{c}_{n}^{c}\right. & \left.=\tilde{x}^{x} \in\left(c^{*}\right)^{c} \cap \hat{c}_{n}\right\} \\
& =: \hat{c}_{n} \Delta c^{*} \text { (sym. diff) }
\end{aligned}
$$

$P\left[\hat{C}_{n} \Delta C^{*}\right]$ - classification
\rightarrow M.v. (depends on Z^{n})
"Learnability" \rightarrow complexity (richness of concepts

$$
\frac{\sum_{2}^{5} 5}{\text { "complex" }}
$$

Probably Approximately Correct (PAC):
property of a learning algo for a given task data $\left(z^{n}\right) \xrightarrow{A_{n}} \hat{C}_{n}$
n $P\left[\tilde{c}_{n} \triangle C^{*}\right] \leq \varepsilon \quad$ (approx. couzeतt) P_{C}^{n}-dist. if n ijd labeled pts when $C^{*}=C$

$$
\begin{array}{r}
P_{C^{*}}^{n}\left\{z^{n}: \quad P\left[\hat{c}_{n} \Delta c^{*}\right]>\varepsilon\right\}<\delta \\
- \text { probably approx. cozzect }
\end{array}
$$

(L. Valiant, D. Angluin 1980 s

Notation: fix $C \in C$

$$
\begin{aligned}
& (x, y): \quad x \sim P, \quad y=1,\{x \in c\} \\
& P_{C}=\text { dist. } e f(x, y) \\
& P_{C}^{n}=\text { dist. of }\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \stackrel{\text { ind }}{\sim} P_{C}
\end{aligned}
$$

$\frac{\text { PAC learnability }}{(\mathscr{P}, Q) \text { property of a learning task }}$
$P A C$ learnable $\Rightarrow \exists$ a PAC learning $a 180 A$ for $(\rho, e$)

Fix ct: $\quad r_{t}(n, \varepsilon, P):=\sup _{c \in C} P_{C}^{n}\left\{P\left(\hat{c}_{n} \Delta C\right)>\varepsilon\right\}$

$$
\bar{\gamma}_{\mathcal{A}}(n, \varepsilon, \mathcal{P})=\sup _{p \in \mathcal{P}} r_{A}(n, \varepsilon, p)
$$

It is PAC if $\lim _{n \rightarrow \infty} \bar{r}_{A}(n, \varepsilon, \rho)=0$.
(at accuracy ह)

To prove PAC learnability: produce PAC learning

Examples:

1) Any finite concept class is PAC-learnable

$$
Q=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\} \quad m<\infty
$$

Claim: \exists a learning. also A sit.

$$
\bar{r}_{A}(n, \varepsilon, P) \leqslant M(1-\varepsilon)^{n}
$$

whore P is the class of all distributions on \varnothing
$n \geqslant \frac{1}{\varepsilon} \log \frac{M}{\delta}$ - examples suffices to give

$$
\bar{r}_{\mathcal{A}}(n, \varepsilon, P) \leq \delta
$$

Prod sketch data z^{n}

$$
\begin{aligned}
& \left.\mathcal{F}\left(z^{n}\right):=\{m \in C m]: y_{i}=1_{\left\{x_{i} \in c_{m} 3\right.} \quad \forall i\right\} \\
& \hat{m}_{n}:=\min \left\{m: m \in F\left(z^{n}\right)\right\} \\
& \hat{C}_{n}=C \hat{m}_{n}
\end{aligned}
$$

"bad set": $B:=\left\{m: P\left(C_{m} \Delta C_{m *}\right)>\varepsilon\right\}$

$$
P_{c^{*}}^{n}\left[\hat{m}_{n} \in \beta\right]=\sum_{m \in B} P_{c^{*}}^{n}\left[\hat{m}_{n}=m\right]
$$

$\hat{m}_{n} \in F\left(Z^{n}\right): C \tilde{m}_{n}$ consistent $w /$ late

$$
\hat{m}_{n} \in B \quad: P\left[C_{m} \Delta C_{m}=\right]>\varepsilon
$$

$$
\begin{gathered}
P_{c^{*}}^{n}\left[\tilde{m}_{n}=m\right] \leqslant P\left[X_{i} \notin C_{m} * \Delta C_{m, 1} \notin \dot{c}\right] \\
(m \in B) \\
\leq(1-\varepsilon)^{n}
\end{gathered}
$$

2) Axis-aligned rectangles are PAC learnable
$x=[0,1]^{2} \quad$ (unit square)

$$
C=\left\{\left[a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right):\right.
$$

$$
\left.a_{1}, b_{1}, a_{2}, b_{2} \in\left[0_{1}, 1\right)\right\}
$$

Also:

$A_{n}:$ data $\longrightarrow \bar{C}_{u}$:
smallest $c \in e_{\text {a that contain }}^{\text {positive examples }}$
Claim: $\bar{r}_{\mathcal{A}}(n, \varepsilon, P) \leq 4(1-\varepsilon / 4)^{n}$
(Blamer, ELrenfeucht, Hanssler, Warmuth, (980s)
idea:

$$
e^{*} \Delta \hat{c}_{n}=\underset{\substack{u \\ \text { random sets }}}{u \quad \cup \cup}
$$

show that, w.p. $\geqslant 1-4(1-\varepsilon / 4)^{n}$,
each of these random rectangles has $P(.) \leq \varepsilon / y$

$$
\begin{aligned}
\bar{r}_{\mathcal{A}}(n, \varepsilon, \mathcal{P}) \leq 4(1-\varepsilon / 4)^{n} & \leq 4 e^{-n \varepsilon / 4} \leq \delta \\
\text { if } n & \geqslant \frac{4}{\varepsilon} \log \frac{4}{\delta}
\end{aligned}
$$

