Concentration Inequalities (Chi 2 of
Recap: $z_{1, \ldots,} z_{n} i_{2}^{\text {ind }} p$ (data) $\hat{1}^{\eta} \rightarrow \mathbb{R}_{+}$ Learning algo: data $\longrightarrow \vec{f}_{n} \in \nabla^{\circ}$
$\mathbb{E}_{p}\left(\hat{f}_{n}(z)\right]$ (expectation on a fresh sample)

$$
\begin{aligned}
& =\int_{z} \hat{f}_{n}(z) P(d z) \\
& \text { tom! }\left(\hat{f}_{n} \text { depends on } z^{n}\right)
\end{aligned}
$$

Goal: construct $L A$ s.t.

$$
\mathbb{E}_{p}\left[\hat{f}_{n}(z)\right] \approx \min _{f \in F} \mathbb{E}_{p}(f(z)]
$$

with high probability (w.r.t. draw of z^{n})
Ex: $\quad z=(x, y) \quad y \in\{0,1\}$

$$
f(z)=1\{y \neq \tilde{f}(x)\} \quad \tilde{f}: x \rightarrow\{0,1\}
$$

Main concerns:

1) When is this possible? (restrictions on F)
2) how much data do we need?

Example (linear classification)

$$
(x, y) \in \mathbb{R}^{d} \times\{0,1\}
$$

classifiers $\left.\tilde{f}_{w}(x)=13 w^{\top} x \geqslant 0\right\},\|x\|=1$
Loss: $f(z)=1, \tilde{f}_{w}(x) \neq y 3$

$$
L_{p}(w):=\mathbb{P}\left[y \neq \tilde{f}_{w}(x)\right]
$$

want to choose $\hat{w}_{n} \in R^{d}$ based on date, sot.

$$
L_{p}\left(\tilde{x}_{n}\right) \approx \min _{\mid w \|=1} C_{p}(n)
$$

with high prob.
Revisit coin tossing: $\quad X_{1}, \ldots, X_{n}$ ind Bern (θ) $\theta \in(0,1)$ unknown

$$
\begin{aligned}
& \hat{\theta}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& \mathbb{P}\left(\left|\hat{\theta}_{n}-\theta\right| \geqslant \varepsilon\right) \leqslant 2 e^{-2 n \varepsilon^{2}} \quad(\text { Lea. } 1)
\end{aligned}
$$

-this is a concentration inequality
E $\hat{\theta}_{n}=\theta$

$$
\mathbb{P}\left(\left|\hat{\theta}_{n}-\mathbb{E} \hat{\theta}_{r}\right| \geqslant \varepsilon\right) \leqslant 2 e^{-2 k \varepsilon^{2}}
$$

- $\hat{\theta}_{n}$ concentrates around its expectation

Build up:

1) Markov's inequality
X is a riv. that takes $\geqslant 0$ values

$$
\mathbb{P}[x \geqslant t] \leq \frac{\mathbb{E} x}{t} \quad\left(\begin{array}{ll}
\text { any } \\
t & 0
\end{array}\right)
$$

Proof $\quad \mathbb{P}[x \geqslant t]=\mathbb{E}[1 ; x \geqslant t 3]$

$$
\begin{aligned}
& \mathbb{E}[1\{x \geqslant t\}] \\
& \leqslant \mathbb{E}\left[\frac{x}{t}\{x \geqslant t\}\right] \\
& \leqslant \mathbb{E}\left[\frac{x}{t}\right]=\frac{\mathbb{E}(x)}{t}
\end{aligned}
$$

$$
\mathbb{P}[x \geqslant t] \leq \min \left\{\frac{\mathbb{E}[x]}{t}, 1\right\}
$$

2) Chebyshev's inequality

$$
\mathbb{P}\{|X-\mathbb{E} X| \geqslant t\} \leqslant \frac{\operatorname{Var}[x]}{t^{2}}
$$

Proof

$$
\begin{aligned}
& U:=(X-\mathbb{E} X)^{2} \\
& \mathbb{E} U=\operatorname{Van}[X]
\end{aligned}
$$

Apply Marka:

$$
\begin{aligned}
& \mathbb{P}\{|x-\mathbb{E} x| \geqslant t\} \\
& =\mathbb{P}\left\{|x-E x|^{2} \geqslant t^{2}\right\} \\
& =\mathbb{P}\left\{u \geqslant t^{2}\right\} \\
& \leqslant \frac{\mathbb{E}(u)}{t^{2}} \quad \text { (Marks) } \\
& =\frac{v_{a}(x)}{t^{2}} .
\end{aligned}
$$

Back to coins:

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\hat{\theta}_{n}-\theta\right| \geqslant \varepsilon\right\} \\
= & \mathbb{P}\left\{\left|\hat{\theta}_{n}-\mathbb{E} \hat{\theta}_{n}\right| \geqslant \varepsilon\right\} \\
& \leq \frac{\mathrm{Van}\left\{\hat{\theta}_{n}\right]}{\varepsilon^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left\{\hat{\theta}_{n}\right\}=\operatorname{Van}\left\{\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\} & X_{i} \stackrel{i j d}{\sim} \operatorname{Beru}(\theta) \\
=\frac{\theta(1-\theta)}{n} & \operatorname{van}\left(X_{i}\right)=\theta(1-\theta)
\end{aligned}
$$

Chebysher: $\mathbb{P}\left\{\left|\hat{\theta}_{n}-a\right| \geqslant \varepsilon\right\} \leqslant \frac{\theta(1-\theta)}{n}$ - loose!

$$
C L T: \mathbb{P}\left\{\left(\hat{\theta}_{n}-\theta\right) \geqslant \varepsilon\right\} \approx 2 \exp \left(-\frac{n \varepsilon^{2}}{2 \theta(1-\theta)}\right)
$$

Exponential Chebysher trick

$$
\mathbb{P}\{x-\mathbb{E} x \geqslant t\} \leq ? \quad(t \geqslant 0)
$$

$\mathbb{P}\{x-\mathbb{E} x \leq-t\} \leq ?$

$$
\begin{aligned}
& \mathbb{P}\{x-\mathbb{E} x \geqslant t\} \quad x-E x \geqslant t \\
& \leq \mathbb{P}\{\underbrace{e^{s(x-E x)}}_{\geqslant 0} \geqslant e^{s t}\} \\
& \begin{aligned}
\Rightarrow \exp & (s(x-1 x)) \\
>0 & \geqslant e^{s / t}
\end{aligned} \\
& \leq \frac{\mathbb{E}\left[e^{3}(X-\mathbb{E} X)\right]}{e^{s t}} \\
& =e^{-s t} \mathbb{E}\left[e^{s(X-15 x)}\right] \\
& \text { Colds for } \\
& \text { every } s \geqslant 0 \text {) }
\end{aligned}
$$

Chernoff bound:

$$
\mathbb{P}[x-\mathbb{E} x \geqslant t] \leq \inf _{5 \geqslant 0}\left\{e^{-3 t} \mathbb{E}\left[e^{j(x-\mathbb{E} x)}\right]\right.
$$

Good (Light) bounds on $\left.\mathbb{E} e^{\delta(X-\mathbb{E} X)}\right]$ needed!

Assume w.l.o.g. 朱 $K=0$, analyze

$$
\psi(s):=\log \mathbb{E}\left(e^{s x}\right] \quad(s \geq 0)
$$

Chernoff: $\mathbb{P}(x \geqslant t] \leq \inf _{s \geqslant 0}\left\{e^{-s t+\psi(s)}\right\}$

$$
=\exp \left(-\sup _{s \geqslant 0}[s t-\psi(s)]\right) .
$$

Lemma (Hoeffding) Suppose X takes values between a and b w.p. 1 (a, b finite). Then

$$
\mathbb{E}\left[e^{s(X-1 x)}\right] \leq \exp \left(\frac{s^{2}(b-a)^{2}}{8}\right), \quad \forall s \geqslant 0 \text {. }
$$

Implications:

$$
\begin{aligned}
& \text { 1) If } a \leq x \leq b \quad a \cdot s, \text { then } \\
& \left.\psi(s) \leq \frac{s^{2}(b-a)^{2}}{8} \quad \text { Cassume } \mid E x=0\right) \\
& \Rightarrow \mathbb{P}[X \geqslant t] \leq \exp \left(-\sup _{s \geqslant 0}^{a}\left(s^{\prime} t-\frac{s^{2}(b-a)^{2}}{8}\right)\right) \\
& g(s)=-\frac{(b-a)^{2}}{8} s^{2}+s t \\
& g^{\prime}(s)=-\frac{(b-a)^{2}}{4} s+t=0
\end{aligned}
$$

max. uniquely attained at $\bar{s}=\frac{4 t}{(b-a)^{2}}$

$$
\begin{aligned}
& \bar{j} t-\frac{1}{8}(b-a)^{2} \bar{j}^{2}=\frac{4 t^{2}}{(b-a)^{2}}-\frac{1}{8}(b-a)^{2} \cdot \frac{16 t^{2}}{(b-a)^{4}} \\
&=\frac{4 t^{2}}{(b-a)^{2}}-\frac{2 t^{2}}{(b-a)^{2}}=\frac{2 t^{2}}{(b-a)^{2}} \\
& \Rightarrow \mathbb{P}\{x \geq t\} \leq \exp \left(-\frac{2 t^{2}}{(b-a)^{2}}\right)
\end{aligned}
$$

2) $X_{1, \ldots,} X_{k}$ iid $p \quad a \leq X_{i} \leq b$ a.s.任 $X_{i}=0$

$$
\begin{aligned}
& \mathbb{P}\left\{\sum_{i=1}^{n} x_{i} \geqslant t\right\} \\
& \leq \inf _{s \geqslant 0} e^{-s t} \mathbb{E}\left[e^{s \sum n} \sum_{i=1}^{n} X_{i}\right] \\
& \mathbb{E}\left[e^{s \sum_{i=1}^{n} X_{i}}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{s X_{i}}\right] \\
& =\prod_{i=1}^{n} \mathbb{E}\left[e^{s X_{i}}\right] \\
& \leq\left(e^{\frac{5^{2}(b-a)^{2}}{8}}\right)^{n} \\
& =\exp \left(\frac{(b-a)^{2}}{8} n s^{2}\right) \\
& \Rightarrow \mathbb{P}\left\{\sum_{i=1}^{n} x_{i} \geqslant t\right\} \leq \min _{s \geqslant 0} e^{-5 t}+\frac{(b-a)^{2}}{8} n s^{2} \\
& =\exp \left(-\frac{2 t^{2}}{n(b-a)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}\left\{\frac{1}{\left.\sum_{i=1}^{n} x_{i} \geqslant \varepsilon\right\}}\right. & =\mathbb{P}\left\{\sum_{i=1}^{n} x_{i} \geqslant n \varepsilon\right\} \\
& \leqslant \exp \left(-\frac{2 n \varepsilon^{2}}{(b-a)^{2}}\right) .
\end{aligned}
$$

3) Coin tossing: $\quad X_{1}, \ldots, X_{n} \underset{\sim}{i i d} \operatorname{Benn}(\theta)$

$$
0 \leq x_{i} \leq 1
$$

$$
\begin{aligned}
& \mathbb{P}\left\{\frac{1}{n} \sum_{T=1}^{n} x_{i} \geqslant \theta+\varepsilon\right\} \leq \exp \left(-2 n \varepsilon^{2}\right) \\
& \mathbb{P}\left\{\frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \theta-\varepsilon\right\} \leq \exp \left(-2 n \varepsilon^{2}\right)
\end{aligned}
$$

Proof of Hoeffling's lemme: next lecture. + MCDiarmid's inequality.

