(1) Let X_1, \ldots, X_n be n independent Bernoulli(θ) random variables. Prove the following multiplicative Chernoff bound:

$$
P \left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq (1 + \gamma)\mu \right) \leq e^{-\gamma^2 n \mu / 3}
$$

for any $0 \leq \gamma \leq 1$ and any $\theta \leq \mu \leq 1$. You may need the fact that

$$
\sum_{k \geq (1+\gamma)\mu n} \binom{n}{k} \mu^k (1 - \mu)^{n-k} \leq e^{-\gamma^2 n \mu / 3}.
$$

Solution. Since the number of times the coin comes up heads in n trials is a Binomial(n, θ) random variable, we have

$$
P \left(\frac{1}{n} \sum_{i=1}^{n} X_i \geq (1 + \gamma)\mu \right) = \sum_{k \geq (1+\gamma)\mu n} \binom{n}{k} \theta^k (1 - \theta)^{n-k}.
$$

Now, the function $\theta \mapsto \theta^k (1 - \theta)^{n-k}$ is nondecreasing for $\theta \leq k/n$. The summation above is only over those k, for which $\mu \leq \frac{k}{(1+\gamma)n} \leq \frac{k}{n}$. Since $\theta \leq \mu$ by hypothesis, we can bound

$$
\sum_{k \geq (1+\gamma)\mu n} \binom{n}{k} \theta^k (1 - \theta)^{n-k} \leq \sum_{k \geq (1+\gamma)\mu n} \binom{n}{k} \mu^k (1 - \mu)^{n-k} \leq e^{-\gamma^2 n \mu / 3}.
$$

(2) Let X_1, \ldots, X_n be $n \geq 2$ real-valued random variables (not necessarily independent). Suppose that there exists some constant $\sigma > 0$, such that for all $s > 0$ and all $i = 1, \ldots, n$

$$
E \left[e^{sX_i} \right] \leq e^{s^2 \sigma^2 / 2}
$$

Prove the following:

(a)

$$
E \left[\max_{1 \leq i \leq n} X_i \right] \leq \sigma \sqrt{2 \log n}.
$$

Hint. Try to bound $e^{sE[\max_{1 \leq i \leq n} X_i]}$, exploit convexity of the function $\phi(x) = e^{sx}$.

(b)

$$
P \left(\max_{1 \leq i \leq n} X_i \geq \sqrt{2\sigma^2 n} \right) \leq \sqrt{\frac{\log n}{n}}.
$$
Solution. (a) For any $s > 0$,
\[e^{s\mathbb{E}[\max_{1 \leq i \leq n} X_i]} \leq \mathbb{E} \left[e^{s\max_{1 \leq i \leq n} X_i} \right] \]
(by convexity of the function $\phi(t) = e^{st}$)
\[= \mathbb{E} \left[\max_{1 \leq i \leq n} e^{sX_i} \right] \]
(since the function $\phi(t) = e^{st}$, $s > 0$, is increasing)
\[\leq \mathbb{E} \left[\sum_{i=1}^{n} e^{sX_i} \right] \]
\[= \sum_{i=1}^{n} \mathbb{E} [e^{sX_i}] \]
\[\leq ne^{s^2\sigma^2/2} \]
(by assumption on the X_i's)

Taking logs, we get
\[\mathbb{E} \left[\max_{1 \leq i \leq n} X_i \right] \leq \log n \frac{s}{s} + \frac{s\sigma^2}{2}. \]

To get the tightest bound, we minimize the right-hand side with respect to s. The optimal choice is $s = \sqrt{2\log n/\sigma^2}$, leading to
\[\mathbb{E} \left[\max_{1 \leq i \leq n} X_i \right] \leq \sigma \sqrt{2\log n}. \]

(b) Use Markov's inequality:
\[\mathbb{P} \left(\max_{1 \leq i \leq n} X_i \geq \sqrt{2\sigma^2 n} \right) \leq \frac{\mathbb{E} [\max_{1 \leq i \leq n} X_i]}{\sqrt{2\sigma^2 n}} \leq \frac{\sigma \sqrt{2\log n}}{\sigma \sqrt{2n}} = \sqrt{\frac{\log n}{n}}. \]

(3) Let $X^n = (X_1, \ldots, X_n)$ be an n-tuple of independent random variables taking values in some space X. The Hamming distance between any n-tuples $x^n, y^n \in X^n$ is defined as the number of coordinates in which x^n and y^n differ:
\[d(x^n, y^n) \triangleq \sum_{i=1}^{n} 1_{\{x_i \neq y_i\}}. \]

If B is an arbitrary (measurable) subset of X^n, then the Hamming distance between an n-tuple $x^n \in X^n$ and B is defined as
\[d(x^n, B) \triangleq \min_{y^n \in B} d(x^n, y^n). \]

Use McDiarmid's inequality to prove the following fact: if
\[\varepsilon \geq \sqrt{\frac{1}{2n} \log \frac{1}{\mathbb{P}(B)}}, \]
then
\[\mathbb{P}(d(X^n, B) \geq n\varepsilon) \leq \exp \left(-2n \left(\varepsilon - \sqrt{\frac{1}{2n} \log \frac{1}{\mathbb{P}(B)}} \right)^2 \right), \]

where $\mathbb{P}(B) = \mathbb{P}(X^n \in B)$ is the probability of the set $B \in X^n$ under the joint distribution of X^n.

Hint. You may find the following fact handy: $d(x^n, B) \leq 0$ if and only if $x^n \in B$. 2
Solution. Consider any \(x^n \in X^n \), as well as any \(x'_i \in X \). Let \(x^n_{(i)} \) denote \(x^n \) with the \(i \)th component replaced by \(x'_i \). Then
\[
d(x^n, B) - d(x^n_{(i)}, B) = \min_{y^n \in B} d(x^n, y^n) - \min_{y^n \in B} d(x^n_{(i)}, y^n)
\leq \max_{y^n \in B} \left[d(x^n, y^n) - d(x^n_{(i)}, y^n) \right]
= \max_{y^n \in B} \left[1_{\{x_i \neq y_i\}} - 1_{\{x'_i \neq y_i\}} \right]
\leq 1.
\]
This holds for every \(i = 1, \ldots, n \). Hence, the function \(g(X^n) = d(X^n, B) \) has the bounded differences property with \(c_1 = \ldots = c_n = 1 \). McDiarmid’s inequality then gives, for any \(t > 0 \):
\[
P\left(E d(X^n, B) - d(X^n, B) \geq t \right) \leq e^{-2t^2/n}
\]
If we use \(t = E d(X^n, B) \), then we get
\[
P\left(d(X^n, B) \leq 0 \right) \leq e^{-2(E d(X^n, B))^2/n}.
\]
Since \(d(X^n, B) \leq 0 \) if and only if \(X^n \in B \), the left-hand side of the above inequality is equal to \(P(B) \). Therefore, we get
\[
E d(X^n, B) \leq \sqrt{\frac{n}{2} \log \frac{1}{P(B)}}.
\]
Now, using the other direction of McDiarmid’s inequality, we have
\[
P\left(d(X^n, B) - E d(X^n, B) \geq t \right) \leq e^{-2t^2/n},
\]
which, together with our bound on \(E d(X^n, B) \), gives
\[
P\left(d(X^n, B) \geq t + \sqrt{\frac{n}{2} \log \frac{1}{P(B)}} \right) \leq e^{-2t^2/n}.
\]
Now let \(t = n \varepsilon - \sqrt{\frac{n}{2} \log \frac{1}{P(B)}} \). By our hypothesis on \(\varepsilon, t \geq 0 \). Substituting this choice of \(t \) into the above probability bound, we obtain the desired result.