Issued: Nov 28

Reading Assignment:

BMP, Ch. 10-11.

Problems:

- 1. Consider the optimal control problem given by the system $\dot{x} = xu$ with $x \in \mathbb{R}$ and $u \in [-1, 1]$, no running cost $(\ell = 0)$, and terminal cost m(x) = x. In other words, the cost functional is $J(u) = x(t_1)$. The final time t_1 is fixed and finite.
 - (i) Find the optimal cost function (also called the value function) V(t, x) by inspection (without using the HJB equation).
 - (ii) Write down the HJB equation for this problem, and simplify it by computing the minimum in it.
 - (iii) Does the optimal cost function from part (a) satisfy the HJB equation from part (b) everywhere?
- 2. (Exercise 11.6.1 in BMP) Consider the system $\dot{x} = u$ and the cost criterion

$$J(u) = \frac{q}{2}x^{2}(T) + \frac{1}{2}\int_{0}^{T}u^{2}(t) dt$$

with $x(0) = x_0$, the terminal time T given, and $q \ge 0$. Find the optimal control using the Minimum Principle. First consider the case when $0 < q < \infty$. Then obtain the control for the limiting case " $q = \infty$," i.e., impose the constraint x(T) = 0. Do the controllers converge as $q \to \infty$?

3. (Exercise 11.6.2 in BMP) A simplified model for a reactor is given by the bilinear system $\dot{x} = xu$, where x is the concentration and u is the reaction rate taken as the control variable. Suppose that x(0) = 0.5 and the terminal time is $t_1 = 1$. Using the Minimum Principle, find the control function that minimizes the cost

$$J(u) = [x(1) - 1]^2 + \int_0^1 u^2(t) \, \mathrm{d}t.$$