The Linear Quadratic Regulator ($\angle Q R$) Problem: Finite and Infinite Time

1) Review $\dot{x}=f(t, x, u) \quad x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}$

$$
J\left(t_{1}, t_{0}, x, u(\cdot)\right)=\int_{t_{0}}^{t_{1}} q(t, x(t), u(t)) d t+p(x(t, 1)
$$

to be minimized over all "admissible" controls ul subject to

$$
\dot{x}(t)=f(t, x(t), u|t|), \quad t \in[(t 0, t,], x(t 0)=t
$$

Bellman $f\left(\mathrm{cn}: \quad V(t, x):=\min _{u(\cdot)} J(t, t, x, u(\cdot))\right.$

$$
t_{0} \leqslant t \leqslant t \text {, }
$$

Under regularity conditions (egg., V is $C^{\prime} J$, the Hamilton- Tacobi-Bellman egn.

$$
\frac{\partial}{\partial t} v(t, x)=-\min _{u \in \mathbb{R}^{m}}\left\{g(t, x, u)+\frac{\partial}{\partial x} v(t, x) f(t, x, u)\right\}
$$

for $t \in\left(t_{0}, x_{1}\right), x \in \mathbb{R}^{n}, \quad V(t, x)=p(x)$
gives an optimal control $k(t, x)$ that minimizes

$$
q(t, x, u)+\frac{\partial v}{\partial x}(t, x) f(t, x, u)
$$

fixed $(t, z) \in(t 0, t,) \times R^{n}$.
If $V(t, x)$ is a C^{\prime} solution of $H J B$ eqn, then it is the Bellman fin, and the op2rmal control 'is, given by $\bar{w}(t)=k(t, x \mid t)$ along the optimal trajectory.
Uniqueness: if $k(t, x)$ is such that

$$
\begin{aligned}
& q(t, x, k(t, x))+\frac{\partial}{\partial x} v(t, x) f(t, x, k(t, x)) \\
& \quad<q(t, x, u)+\frac{\partial}{\partial x} v(t, x) f(t, x, u) \quad \forall u \in \mathbb{R}^{m} \\
& \text { s.t.uF } k(t, x)
\end{aligned}
$$

then $J\left(t_{1}, t_{0}, x, u(\cdot)\right)>v\left(t_{0}, x\right)$

$$
\equiv \min _{u(-)} J\left(t_{1}, t_{0}, x, u(-)\right)
$$

for all $u(\cdot)$ that are not equal to $k(t, x)$ almost everywhere.
2) Finite-time $L Q R$ problem

LTV system: $\dot{x}(t)=A(t) x(t)+B(t) u(t)$

$$
\begin{aligned}
& t_{0} \leq t \leq t, \quad \pi\left(t_{0}\right)=x \\
& \begin{aligned}
J\left(t, 1 t_{0}, x, u(\cdot)\right):= & \int_{t_{0}}^{t 1}\left\{u(t)^{\top} R(t) u(t)+x(t)^{\top} \varphi(t) x(t)\right\} d t \\
& +x(t,)^{\top} S x(t,)
\end{aligned}
\end{aligned}
$$

where

$$
\begin{array}{ll}
R(t)=R(t)^{\top}>0 & \left(\text { in } \mathbb{R}^{m \times m}\right) \\
\varphi(t)=Q(t)^{\top} \geqslant 0 & \text { (in } \left.\mathbb{R}^{n \times n}\right) \\
S^{\prime}=S^{\top} \geqslant 0 & \text { (in } \left.\mathbb{R}^{n \times n}\right)
\end{array}
$$

Goal: determine optimal control law, compute $v(t, x)$.
Analysis:

$$
\begin{aligned}
& V(t, x)=x^{\top} P(t) x \quad(\text { ansatz) } \\
& t_{0} \leq t \leq t_{1}, \quad V(t, x)=x^{\top} S^{\prime} x \equiv p(x) \\
& \Rightarrow P(t,)=s^{\prime}, \text { and } \\
& x^{\top} P(t,) x \equiv \min _{u(t)} J\left(t_{1}, t_{0}, x_{0}, u(.)\right)
\end{aligned}
$$

$$
\begin{array}{rlr}
\frac{\partial}{\partial t} V(t, x)= & -\min _{u \in \mathbb{R}^{m}}\left\{u^{\top} R(t) u+x^{\top} \varphi(t) x\right. \\
& +\frac{\partial}{\partial x} V(t, x) & (x(t) x+B(t) u)\} \\
\frac{\partial}{\partial t} v(t, x)=\begin{aligned}
x^{\top} \dot{P}(t) x & \text { assume: } \\
\frac{\partial}{\partial x} V(t \mid x)=2 x^{\top} P(t) & {\left[p(t)=\rho(t)^{\top}\right] }
\end{aligned}
\end{array}
$$

For any $x \in \mathbb{R}^{n}$:

$$
\begin{aligned}
& x^{\top} \dot{P} x=-\min _{u \in \mathbb{R}^{m}}\left\{u^{\top} R u+x^{\top} Q x+2 x^{\top} P(A x+B u)\right\} \\
& F(u):=x^{\top} \varphi x+x^{\top} P A x+x^{\top} A^{\top} P x \\
&+u^{\top} R u+2 x^{\top} P B u
\end{aligned}
$$

$$
\begin{aligned}
\min _{u \in \mathbb{R}^{n}} F(u) & =x^{\top} Q x+x^{\top}\left(P A+A^{\top} P\right) x \\
& \left.+\min _{u \in \mathbb{R}^{n}} \int u+R u+2 u^{\top} B^{\top} P x\right\}
\end{aligned}
$$

Here, $R(t)=R(t)^{\top}>0$, so $u \mapsto u^{\top} R u+2 u^{\top} B^{\top} P x$ is strongly convex, 'so the minimizing $u(t, x)$ is unique, and 'solves

$$
\begin{aligned}
2 R(t) u(t, x) & =-2 B(t)^{\top} P(t) x \\
u(t, x) & =-R(t)^{-1} B(t)^{\top} P(t) x \\
& =F(t) x .
\end{aligned}
$$

$$
\begin{aligned}
& F\left(u\left(t^{\prime} x\right)\right)=x^{\top} F^{\top} R F x+2 x^{\top} F^{\top} B^{\top} P x \\
& =x^{\top} P B R^{-1} R R^{-1} B^{\top} P x-2 x^{\top} P B R^{-1} B^{\top} P x \\
& =-x^{\top} P B R^{-1} B^{\top} P x
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow x^{\top} \dot{P} x=-x^{\top}\left(P A+A^{\top} P+Q-P B R^{-1} B^{\top} P\right) x \\
t \in\left(t_{0}, t_{1}, \quad P(t,)=\mathscr{S}\right.
\end{array}
$$

for all $x \in \mathbb{R}^{n}$, so $P(t)$ has to solve

$$
\dot{P}=+P B R^{-1} B^{\top} P-P A-A^{\top} P-Q, \quad P(E, K=\rho
$$

- Sn, $P(t)$ is a solution of this Riccati DE.

Observations:

1) The RDE has a solution $p(t) \in \mathbb{R}^{n \times n}$, which is unique.
2) If $P(t)$ solves the RDE, then $P(t)^{\top}$ a 1 so solves it, so $p(t)=P(t)^{\top}$ by uniqueness
3) $P(t) \geqslant 0$: $V(t, x)=x^{\top} P(t) x$ is the Bellman fan for the LQR problem, so

$$
\begin{aligned}
v(t \mid x)= & x^{\top} P(t) x \\
& =\min _{u(i)}\left\{\int_{t}^{t_{1}}\left\{u(s)^{\top} R(s) u(s)+x(s)^{\top} \varphi(s) x(s)\right\} d s\right. \\
& \left.\quad+x(t,)^{\top} s x(t)\right\} \\
& \geqslant 0 \quad \text { fir all } x \in \mathbb{R}^{n} .
\end{aligned}
$$

Therefore, $k(t, x)=F(t) x=-R(t)^{-1} B(t)^{\top} P(t) x$ is the unique optimal control, and $V\left(t_{0}, x\right)=x^{\top} P\left(t_{0}\right) x$ is the minimal cost.

Closed-loop system (ot optimality):

$$
\begin{gathered}
\dot{x}(t)=(A(t)+B(t) F(t)) x(t) \\
x(t 0)=x
\end{gathered}
$$

3) Infinite-time (steady-state) $\angle Q R$ problem LT:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& x(0)=x, \infty \quad t \geqslant 0
\end{aligned}
$$

Cost: $J_{\infty}(x, u(\cdot)):=\int_{0}\left\{u(t)^{\top} R u(t)+x(t)^{\top} \varphi x(t)\right\} d t$
to be minimized over admissible controls u(-), where $\quad R=R^{\top}>0, \quad \varphi=\varphi^{\top} \geqslant 0$.

Bellman fan: $V(x):=\min _{u(\cdot)} \sigma_{\infty}(x, u(\cdot))$.
Assumption: (A, B) is a controllable pair. (this guarantees that, for any $x \in \mathbb{R}^{n}$, 7 ur.) sit.

$$
\left.J_{\infty}(x, u(\cdot))<\infty\right)
$$

Analysis:
Fix some $\tau>0$, consider

$$
\min _{u(-)} J(\tau, 0, x, u(-))
$$

with $q(t, x, u)=u^{\top} R u+x^{\top} \varphi x, \quad p(x)=0$
RDE: $\quad P_{\tau}(\cdot)=P_{\tau}(\cdot)^{\top} \geqslant 0$

$$
\begin{array}{rl}
\dot{P}_{\tau}=P_{\tau} B R^{-1} \dot{B}_{\tau}^{\top}-P_{\tau} A-A^{\top} P_{\tau} & -Q \\
0 & 0 t \leq \tau \quad P_{\tau}(\tau)=0
\end{array}
$$

Let $\pi(t):=P_{\tau}(\tau-t)$ for $0 \leqslant t \leq \tau$
So, $\pi(0)=P_{\tau}(\tau)=0$, and

$$
\begin{aligned}
\dot{\Pi}=-\pi B R^{-1} B^{\top} \pi+ & \pi A+A^{\top} \pi+Q \\
& 0 \leqslant t \leqslant \tau, \pi / 0)=0
\end{aligned}
$$

If we cleo this for every $\tau>0$, then we see that we can define $\pi(t)=\pi(t) \geqslant \geqslant 0 \quad \forall t \geqslant 0$, shf.

$$
\begin{array}{r}
\dot{\pi}=-\pi B R^{-1} B \pi+\pi A+A^{\top} \pi+\theta, \quad t \geqslant 0 \\
\pi / 0)=0
\end{array}
$$

We will stuon thant $\left.T:=\lim _{t \rightarrow \infty} \pi / t\right)$ exists.
$x^{\top} \pi(\tau) x=V_{\tau}(0, x)$, where V_{τ} is the Bellman for for the LQR problem on $[0, \tau]$, with

$$
q(x, u)=u+\operatorname{Ra}+x^{F} g x, \quad p(x)=0
$$

Fix $\sigma>\tau \geqslant 0$.
Claim: $\quad x^{\top} \pi(\sigma) x \geqslant x^{\top} \pi(\tau) x \geqslant 0$

$$
\begin{aligned}
x^{\top} \pi(\sigma) x= & V_{\sigma}(0, x) \\
& =J\left(\sigma, 0, x, u_{\sigma}(\cdot)\right) \quad u_{\sigma}(\cdot)- \\
& =J\left(\tau, 0, x, u_{\sigma}(\cdot)\right) \\
& \quad+\int_{\tau}^{\sigma} q\left(x(t), u_{\sigma}(t)\right) d t \\
& \geqslant \sigma\left(\tau, 0, x, u_{\sigma}(\cdot)\right) \\
& \geqslant V_{\tau}(0, x) \\
& =x^{\top} \pi(\tau) x \quad \forall x \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\text { ugh(}) \text {-optimal }
$$

$$
\text { on }[0, \sigma]
$$

\Rightarrow for each $x \in \mathbb{R}^{n}, \quad t \rightarrow x^{\top} \pi(t) x$ is bounded below, by 0 and nondecreasing.

Claim: (A, B) controllable pair \Rightarrow

$$
\pi=\lim _{t \rightarrow \infty} \pi(t)
$$

exists, and solves Algebraic Riccati Egn

$$
\pi B R^{-1} B^{\top} \pi-\pi A-A^{\top} \pi-\varphi=0
$$

Fix $x \in \mathbb{R}^{x}$. By controllability, $\exists u,(\cdot)$ sit.

Take $u(t):=\left\{\begin{aligned} u,(t), & 0 \leq t \leq 1 \\ 0, & t>0\end{aligned}\right.$

Then $J_{\infty}(x, u(\cdot))$

$$
=\int_{0}^{1}\left\{u(t)^{\top} R u,(t)+x(t)^{\top} \varphi x(t)\right\} d t<\infty
$$

$$
\Rightarrow \min _{u(\cdot)} \tau \infty(x, u(\cdot))<\infty
$$

Then, $\forall \tau>0$,

$$
\begin{aligned}
& x^{\top} \pi(\tau) x=V_{\tau}(0, x) \\
& \leq J(\tau, 0, x, u(\cdot 1) \\
& \leq J_{\infty}(0, x, u(\cdot))<\infty \\
& \Rightarrow \quad 0 \leq x^{\top} \pi(\tau) \leq x^{\top} \pi(\sigma) x \leq J_{\infty}(x, u(\cdot)) \\
& f_{\sigma} a, 0 \leq \tau<\infty
\end{aligned}
$$

So, $\lim _{t \rightarrow \infty} x^{\top} \pi(t) x$ exists for each x.
Thus, $\pi:=\lim _{l \rightarrow \infty} \pi(t)$ exists
[apply to $x=e_{i}, \quad x=e_{i+e_{j}} \quad \forall i_{1} j \in\{1, \ldots, n\}$, where $e_{l l \ldots e_{n}} \in \mathbb{R}^{n}$ are the standard basis vectors in \mathbb{R}^{n}]

$$
\begin{array}{r}
\dot{\Pi}(t)=-\Pi(t) B R^{-1} B^{\top} \Pi(t)+\pi(t) A+A^{\top} \Pi(t)+Q \\
\Pi(0)=0
\end{array}
$$

$$
\lim _{t \rightarrow \infty} \dot{\Pi}(t) \text { exists, }=0
$$

so $\pi B R^{-1} B^{\top} \pi-\pi A-A^{\top} \pi-\varphi=0$

Claim: $b(x)=-F x$, where $F:=R^{-1} B^{\top} T$, is the unique optimal control that achieves $V(x)$ (Bellman for) at each x.
Proof: next lecture.

