Problems to be handed in

1 Consider the autonomous dynamical system

$$
\begin{equation*}
\dot{x}=f(x) \tag{1}
\end{equation*}
$$

where $x(t) \in \mathbb{R}^{n}$. Let a vector $\xi \in \mathbb{R}^{n}$ be given. Then, for $t \geq s \geq 0$, let $\varphi_{s, t}(\xi)$ denote the point $x(t)$ on the trajectory of this system starting from $x(s)=\xi$, or, equivalently,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{s, t}(\xi)=f\left(\varphi_{s, t}(\xi)\right), \quad t \geq s
$$

with the initial condition $\varphi_{s, s}(\xi)=\xi$. By time invariance, $\varphi_{s, t}(\xi)=\varphi_{0, t-s}(\xi)$. We say that the system (1) is exponentially contracting if there exist constants $c, \lambda>0$ such that

$$
\left|\varphi_{s, t}(\xi)-\varphi_{s, t}\left(\xi^{\prime}\right)\right| \leq c e^{-\lambda(t-s)}\left|\xi-\xi^{\prime}\right|
$$

for all $t \geq s \geq 0$ and all $\xi, \xi^{\prime} \in \mathbb{R}^{n}$. In other words, an exponentially contracting system "forgets" its initial condition exponentially fast.

Now, let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1} function which is m-strongly convex, i.e.,

$$
F(y) \geq F(x)+\nabla F(x)^{\top}(y-x)+\frac{m}{2}|y-x|^{2}, \quad \forall x, y \in \mathbb{R}^{n}
$$

Prove that the gradient flow $\dot{x}=-\nabla F(x)$ is exponentially contracting.
2 Consider the problem of estimating the scalar parameter θ from online observations $(u(t), y(t))$ related via $y(t)=\theta u(t)$. In class, we have discussed the gradient method

$$
\dot{\hat{\theta}}=-\gamma \nabla J_{t}(\widehat{\theta}),
$$

where $J_{t}(\widehat{\theta}):=\frac{1}{2}(\widehat{\theta} u(t)-y(t))^{2}$ is the instantaneous cost at time t and $\gamma>0$ is a fixed adaptation gain. We have shown that the parameter estimation error $\tilde{\theta}(t):=\widehat{\theta}(t)-\theta$ evolves according to the ODE

$$
\dot{\tilde{\theta}}=-\gamma u^{2}(t) \tilde{\theta}
$$

(a) Prove the above equation for $\tilde{\theta}$ has the solution

$$
\tilde{\theta}(t)=\exp \left(-\gamma \int_{0}^{t} u^{2}(s) \mathrm{d} s\right) \tilde{\theta}(0) .
$$

(b) We say that $\tilde{\theta}$ is Uniformly Exponentially Convergent (UEC) if there exist some $c, \lambda>0$ such that

$$
|\tilde{\theta}(t)| \leq c e^{-\lambda\left(t-t_{0}\right)}\left|\tilde{\theta}\left(t_{0}\right)\right|, \quad \forall t \geq t_{0} \geq 0
$$

Prove that $\tilde{\theta}$ is UEC if and only if the input u has the persistent excitation (PE) property.

3 Recall that the minimizers

$$
\hat{\theta}(t)=\underset{\hat{\theta}}{\arg \min }\left\{\frac{1}{2} \int_{0}^{t}\left(\hat{\theta}^{\top} \bar{\phi}(s)-\bar{z}(s)\right)^{2} \mathrm{~d} s+\frac{1}{2}\left(\hat{\theta}-\hat{\theta}_{0}\right)^{\top} Q_{0}\left(\hat{\theta}-\hat{\theta}_{0}\right)\right\}, \quad t \geq 0
$$

for a given initial condition $\hat{\theta}(0)=\hat{\theta}_{0}$ and a fixed symmetric and positive definite matrix Q_{0} can be generated by the flow

$$
\begin{aligned}
\dot{\hat{\theta}} & =-P \bar{e} \bar{\phi} \\
\dot{P} & =-P \bar{\phi} \bar{\phi}^{\top} P
\end{aligned}
$$

with initial conditions $\hat{\theta}(0)=\hat{\theta}_{0}$ and $P(0)=Q_{0}^{-1}$. Here, $\bar{e}(t):=\hat{\theta}(t)^{\top} \bar{\phi}(t)-\bar{z}(t)$ is the (normalized) output prediction error. Fill in the details in the proof of $\bar{e}, \dot{\hat{\theta}} \in L_{2} \cap L_{\infty}$.

4 Consider the first-order scalar plant

$$
\begin{equation*}
\dot{y}=-a y+b u \tag{2}
\end{equation*}
$$

where $a>0$ (so the system is stable) and $b \neq 0$.
(a) Derive an explicit expression for the output $y(t)$ of (2) due to the sinusoidal input $u(t)=\sin \omega t$, where $\omega \neq 0$ is a constant frequency.
(b) Using the result of part (a), show that the steady-state output of (2) is given by

$$
y_{\mathrm{ss}}(t)=A \sin (\omega t+\alpha),
$$

and give explicit expressions for the amplitude A and the phase α in terms of the plant parameters a, b and the input frequency ω.
(c) Show that the sinusoidal input $u(t)=\sin \omega t$ is sufficiently rich in the sense that $\phi=\left(u,-y_{\mathrm{ss}}\right)^{\top}$ has the PE property.

