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Adaptation and regulation with signal detection
implies internal model
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Abstract

This note provides a simple result showing, under suitable technical assumptions, that if a system � adapts to a class of
external signals U, in the sense of regulation against disturbances or tracking signals in U, then � must necessarily contain
a subsystem which is capable of generating all the signals in U. It is not assumed that regulation is robust, nor is there a
prior requirement for the system to be partitioned into separate plant and controller components. Instead, one assumes that
a “signal detection” property holds.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose that one knows that a certain system � reg-
ulates against all those external input signals u which
belong to a predetermined class U of time-functions.
(Input signals u are often thought of as disturbances
to be rejected or signals to be tracked, depending on
the application.) In biology, one often uses the term
adaptation for this property. It means that a certain
quantity y(t) associated to the system, called its out-
put (also called a regulated variable or an error) has
the property that y(t) → 0 as t → ∞ whenever the
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system is subject to an input signal from the class U
(Fig. 1). The internal model principle (IMP) states,
roughly, that the system � necessarily must contain
a subsystem �IM which can itself generate all distur-
bances in the class U. The terminology arises when
thinking of �IM as a “model” of a system which
generates the external signals.
For example, if y(t) → 0 as t → ∞ whenever the

system is subject to any external constant signal (i.e.,
the class U consists of all constant functions), then
the system � must contain a subsystem �IM which
generates all constant signals (typically an integrator,
since constant signals are generated by the diCerential
equation u̇=0). Of course, the choice of y=0 as the
“adaptation value” is merely a matter of convention;
by means of a change of variables, one may always re-
duce a given regulation objective “y(t) → y0” where
y0 is some predetermined value, to the special case
y0 = 0.
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Fig. 1. Given system, regulated output y(t) when inputs in U.

Fig. 2. Decomposition of � into �0 and �IM , the latter driven by
y(t).

In addition, the IMP speciHes that, in an appro-
priate sense, the subsystem �IM must only have y
as its external input, receiving no other direct in-
formation from other parts of the system nor the
input signal u. One intuitive interpretation is that
�IM generates its “best guess” of the external input
u based on how far the output y is from zero. Pic-
torially, if we have the situation shown in Fig. 1,
then there must be a decomposition of the system �
into two parts, as shown in Fig. 2, where the system
�IM (with y ≡ 0) is capable of reproducing all the
functions in U.
The internal model principle originates in the bio-

logical cybernetics literature. But, as with any “princi-
ple” in control theory (like dynamic programming, the
maximum principle, etc.) and more generally in math-
ematics, the IMP is not a theorem but rather a “mold”
for many possible theorems, each of which will hold
under appropriate technical assumptions, and whose
conclusions will depend upon the precise meaning
of “class of external signals”, “reproducing all func-
tions”, and so on.
The best-known instance of an internal model theo-

rem is due to Francis and Wonham, who in a series of
beautiful and deep papers in the mid 1970s proved a
theorem for linear systems which showed, in essence,
that structurally stable or “robust” adaptation forces
the existence of embedded internal models. Partial
generalizations of their work to nonlinear systems
were later obtained by Wonham and Hepburn, see
[1,14,15,2–6]. The Francis/Wonham theory applies
to systems � which are already partitioned into a

“plant” plus a “controller”. The robustness assump-
tion amounts to the requirement that the given con-
troller should perform appropriately (in the sense that
the regulation objective y(t) → 0 is achieved) even
when the plant subsystem—but most deHnitely not the
controller subsystem—is arbitrarily perturbed. The
conclusion is that the controller is driven by y and in-
corporates a model of the external signals. That some
additional condition—such as structural stability—
must be imposed is obvious, since the system � which
simply outputs y=0 for every possible input signal u
does not contain any subsystem generating the signals
u. We will impose instead a condition which amounts
to a signal detection property: the output must reNect
sudden changes in the input.
Note that this type of objective is very diCerent from

what would be typical in control design: in the latter
Held, one would ideally not even notice disturbances
(for instance a change in the road grade, in an auto-
mobile’s cruise-control system, or a bump in the road,
in an active suspension system). In contrast, in bio-
logical applications, signal detection is often an objec-
tive, to be followed by a return to default values. This
subtle diCerence in desired behaviors, while dealing
with what are otherwise similar problems, is charac-
teristic of many applications of control-theory ideas in
biology.
Recent work in molecular biology, cf. [16], has

suggested that the IMP could help guide experimen-
talists and modelers: if certain characteristics of a
system adapt to signals in a given class (in all the
examples so far, constant inputs, such as for instance
y(t)= the relative “activity” of enzymes controlling
motors in Escherichia coli chemotaxis, with respect
to u(t)= concentration of extracellular ligand, but
similar considerations may apply to periodic inputs
and circadian clocks as internal models of day/night
periods) then the IMP could, in principle, help disti-
nguish among mathematical models which do or do
not contain internal models.
With a view toward such biological applications,

it is desirable to have available a theorem which (a)
applies to nonlinear systems �, at least under reason-
able technical assumptions, and (b) does not require
the system � to be split between “plant” and “con-
troller” subsystems, nor (c) requires structural stabil-
ity (robustness) in the sense of the Francis/Wonham
theory (which would imply, in the case of the E.coli
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motor control network, that the system should per-
fectly adapt even if there are arbitrary direct con-
nections between the external ligands and the motor
signals, a matter which seems diPcult to check ex-
perimentally), and relies instead upon a signal de-
tection property. We present one very elementary
and self-contained such result in this note. It basi-
cally just picks from and “repackages” some of the
basic concepts and techniques developed by previ-
ous researchers for the same problems, in particu-
lar: the use of diCerential geometric techniques and
“output-zeroing” sets [14,2–6,11], dynamical systems
notions like omega-limit sets [2,3,11], and system
decompositions motivated by the center manifold the-
orem [2,5,3,11]. Isidori’s excellent textbooks [9,10]
should be consulted for a far deeper discussion of
many of the issues raised here.
Precise mathematical deHnitions are provided in

Section 2. On the other hand, since the linear ver-
sion of the result is very easy to explain, we sketch
that case Hrst. (The discussion assumes some famil-
iarity with frequency domain techniques, and may be
skipped without loss of continuity.)

1.1. Linear case

Let us denote by S the transfer function of the sys-
tem �: if y is the output produced when � starts at
the zero initial state and is fed input u, then the rela-
tion ŷ(s)= S(s)û(s) holds between the Laplace trans-
forms ŷ(s), û(s) of the output and input. One expresses
S(s)=p(s)=q(s) as the quotient of two relatively prime
polynomials, with the degree of p less than the degree
of q. (An equivalent discussion using diCerential op-
erators instead of Laplace transforms is also possible,
see e.g. Section 6.7 in [13].) The Hrst observation, a
well-known fact in systems theory, is that the zeroes
of p can be viewed, alternatively, as poles of a feed-
back subsystem. To see this, we assume that p is not
identically zero, and divide the polynomial q by p,
obtaining q = ap + b, where b is some polynomial
of degree less than p. Now, as the algebraic equality
y=(p=q)u is equivalent to y=(1=a)(u− (b=p)y), we
conclude that the system � can be decomposed as in
Fig. 3. For example, if s=0 is a zero of S (that is, 0 is
a root of p), which amounts to the property that con-
stant signals get diCerentiated by � (the “DC gain” of
� is zero), then the factor 1=s appears in the feedback

Fig. 3. System equivalent to �: closed-loop zeros are feedback
poles.

Fig. 4. Exosystem and system in cascade.

box b=p, and can be interpreted as an integrator of the
output y.
We will show that, in general, the subsystem with

transfer function b=pmodels all inputs which � adapts
to. Let us suppose that the class U of inputs can be
described as the set of all possible solutions of a Hxed
linear diCerential equation

u(‘)(t) + b1u(‘−1)(t) + · · ·+ b‘−1u′(t) + b‘u(t) = 0

for some integer ‘, and which has no stable modes.
(Stable modes, giving components of u which con-
verge to zero, are less interesting, since they do not
represent persistent disturbances.) We view these sig-
nals u as the outputs of an “exosystem” � which is
obtained by rewriting the diCerential equation as a sys-
tem of ‘ Hrst-order equations. Fig. 4 shows a cascade
consisting of the original system � and the exosystem
� which generates the inputs in U. (If, for example,
U= constant inputs, then one would let � be the sys-
tem with equation ẇ = 0 and output u = w, and for
each initial condition w(0)=u0, one obtains a diCerent
constant output u(t) ≡ u0.) The regulation objective
is now simply that y(t) → 0 for all possible initial
conditions of the composite system, i.e. for all initial
conditions of the original system � and all initial con-
ditions of the exosystem �, the latter corresponding
to all possible inputs in U being fed to �.
Next, we reformulate this regulation property by

adding an external input v(·) to the exosystem, and
requiring now that y(t) → 0 for all possible stable
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Fig. 5. Exosystem and system, forced by stable inputs.

Fig. 6. Decomposition of b=p.

inputs (v(t) → 0 as t → ∞) but only when starting
from the zero initial state. (Such replacements of ini-
tial states by stable forcing inputs—assuming natural
controllability/observability conditions—are elemen-
tary exercises in linear systems theory, see e.g. the
proof of Theorem 33 in [13].) In other words, we have
now the situation illustrated by Fig. 5. We denote by
G the transfer function of the exosystem �: G = 1=�,
where

�(s) = s‘ + b1s‘−1 + · · ·+ b‘−1s + b‘:

To see that the subsystem with transfer function b=p
includes an internal model of �, we argue as follows.
The regulation property for the cascade in Fig. 5 means
that the product rational functionGS is stable (all poles
have negative real parts), while the assumption that
G had no stable modes means that all the poles of G
(i.e. the roots of the polynomial �) have nonnegative
real parts. Therefore, these poles must be canceled in
the product GS; in other words, S must have among
its zeroes all the poles of G, so that we can write
p=�p0 for some polynomial p0. Thus b=p=b=(�p0).
One may now factor b = b1b2 in such a way that
the degree of b2 is less than the degree of �, so that
b=p=(b1=p0)(b2=�) and now the system with transfer
function b=p can be written itself in the cascade form
in Fig. 6. The subsystem with transfer function b2=�
generates all the inputs in U, since one may write a
set of diCerential equations for it which is exactly the
same as for the exosystem �, changing only the output
mapping (“controller form” realization).
Since the tools of transfer functions are not available

for nonlinear systems, a diCerent approach is required
in general.

2. De�nitions and statement of result

We consider single-input single-output systems S,
aPne in inputs:

ẋ(t)=f(x(t))+u(t)g(x(t)); y(t)=h(x(t)) (1)

(dot indicates derivative with respect to time, and the
arguments t will be omitted from now on; see [13]
for general deHnitions and properties of systems with
inputs). Here x(t), u(t), and y(t) represent the state,
input, and output at time t, f and g are smooth vector
Helds on Rn (n is the dimension of the system), h is a
scalar smooth function Rn → R, and f(0)=h(0)=0.
(Several assumptions on f and g will be made later.)
A special case is that of linear systems

ẋ = Ax + ub; y = cx; (2)

where A is an n × n matrix, b is a column n-vector,
and c is a row n-vector.
Suppose given a class U of functions [0;∞) →

R (such as for example the set of all constant func-
tions). We say that � adapts to inputs in U (a more
appropriate technical control-theoretic term would be
“asymptotically rejects disturbances in U”) if the fol-
lowing property holds: for each u∈U and each initial
state x0 ∈Rn, the solution of (1) with initial condition
x(0) = x0 exists for all t¿ 0 and is bounded, and the
corresponding output y(t)=h(x(t)) converges to zero
as t → ∞.
We will say that S contains an output-driven in-

ternal model of U if there is a change of coordinates
which brings Eq. (1) into the following block form:

ż1 = f1(z1; z2) + ug1(z1; z2);

ż2 = f2(y; z2);

y = �(z1) (3)

(the subsystems with variables z1 and z2 correspond,
respectively, to �0 and �IM in Fig. 2), and in addition
the subsystem with state variables z2 is capable of
generating all functions in U, meaning the following
property: there is some scalar function ’(z2) so that,
for each possible u∈U, there is some solution of

ż2 = f2(0; z2); (4)

which satisHes ’(z2(t)) ≡ u(t).
The precise meaning of “change of coordinates” is

as follows. There must exist an integer r6 n, diCeren-
tiable manifolds Z1 and Z2 of dimensions r and n− r,
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respectively, a smooth function �: Z1 → R, vector
Helds F and G on Z1 × Z2 which take the partitioned
form

F =

(
f1(z1; z2)

f2(�(z1); z2)

)
; G =

(
g1(z1; z2)

0

)

and a diCeomorphism # :Rn → Z1 × Z2, such that

#∗(x)f(x) = F(#(x)); #∗(x)g(x) = G(#(x));

�(#1(x)) = h(x)

for all x∈Rn, where #1 is the Z1-component of # and
star indicates Jacobian.
Our result will hold under additional conditions on

the vector Helds deHning the system. The Hrst condi-
tion is the fundamental one from an intuitive point of
view, namely that the system is able to detect changes
in the input signal:

Assumption 1. A uniform relative degree exists.

This means that there exists some positive integer
r such that

LgLk
fh ≡ 0 ∀k ¡ r − 1

and

LgLr−1
f h(x) 	= 0 ∀x∈Rn;

where, as usual, LX h indicates the directional deriva-
tive (“Lie derivative”) of a function h along the direc-
tion of the vector Held X , that is (LX h)(x) =∇h(x) ·
X (x). The integer r, if it exists, is called the relative
degree of �. It is possible to prove (see [9]) that when
r exists, necessarily r6 n.

For a linear system (2), existence of a relative de-
gree amounts to simply asking that cAib is nonzero
for some i, or equivalently that the transfer function
c(sI − A)−1b is not identically zero. For general sys-
tems (1), the assumption is equivalent to the statement
that the output derivatives y(k)(t) must be independent
of the value of the input at time t, for all k ¡ r, but
that y(r)(t) = b(x(t)) + a(x(t))u(t) for some function
a(x) which is everywhere nonzero (so that the system
can be “inverted” to obtain the instantaneous value
u(t) from instantaneous derivatives). See also [12] for
a discussion of the characterization of r in terms of
smoothness of outputs when inputs are discontinuous
(change detection).

The next two conditions are of a technical nature.
They are automatically satisHed for linear systems. For
nonlinear systems, we need such conditions in order
to guarantee the existence of a change of variables
exhibiting the system �IM . (See Remark 3.2 for ways
of weakening these assumptions.) We are guided by
conditions which appear in Isidori’s book [9].
Assuming that the degree is r, we introduce the

following vector Helds:

g̃(x) =
1

LgLr−1
f h(x)

g(x);

f̃(x) = f(x)− (Lr
fh(x))g̃(x);

)i := adi−1
f̃

g̃; i = 1; : : : ; r;

where adX is the operator adX Y =[X; Y ]= Lie bracket
of the vector HeldsX and Y . Recall that a vector HeldX
is said to be complete if the solution of the initial value
problem ẋ = X (x); x(0) = x0 is deHned for all t ∈R,
for any initial state x0, and that two vector Helds X and
Y are said to commute if [X; Y ] = 0. The assumptions
are

Assumption 2. )i is complete, for i = 1; : : : ; r.

Assumption 3. The vector Helds )i commute with
each other.

Finally, we must deHne the allowed classes of in-
puts U. As usual in control theory (see also the dis-
cussion in Section 1.1), we will assume that inputs
are generated by exosystems. That is, there is given a
system �:

ẇ = Q(w); u = ,(w) (5)

(let us say evolving on some diCerentiable manifold,
Q a smooth vector Held, and , a real-valued smooth
function, although far less than smoothness is needed)
such that the input class U consists exactly of those
inputs u(t)= ,(w(t)), t¿ 0, for all possible solutions
of ẇ = Q(w). For example, if we are interested in
constant signals, we pick ẇ = 0, u = w and if we
are interested in sinusoidals with frequency ! then
we use ẋ1 = x2, ẋ2 = −!2x1, u = x1. It is by now
standard in nonlinear studies of necessary conditions
for regulation to impose conditions on omega limits
sets for trajectories of the exosystem, see [2,3]; we
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will follow the approach in [11,9] and assume that the
exosystem is Poisson-stable: for every state w0, the
solution w(·) of ẇ=Q(w), w(0)=w0 is deHned for all
t ¿ 0 and it satisHes thatw0 is in the omega-limit set of
w, that is, there is a sequence of times ti → ∞ such that
the sequence w(ti) converges to w0 as t → ∞. This
means that the exosystem is almost-periodic in the
sense that trajectories keep returning to neighborhoods
of the initial state.
This theorem is proved in Section 3.

Theorem 1. If Assumptions 1–3 hold and the sys-
tem � adapts to inputs in a class U generated by
a Poisson-stable exosystem, then S contains an
output-driven internal model of U.

2.1. An example

As an example, consider the model for E.coli
chemotaxis adaptation to constant inputs given in
[8, Section 2.2]. Letting x1=R and x2=RL be the con-
centrations of unbound and bound receptors respec-
tively, and taking the external ligand concentration
u = L as input, we have the following equations:

ẋ1 = a1 − a2x1 + a3x2 − a4x1u;

ẋ2 = a5 − a6x2 + a4x1u (6)

for suitable positive constants a1; : : : ; a6. In terms of
vector Helds,

f =

(
a1 − a2x1 + a3x2

a5 − a6x2

)
; g =

(−a4x1

a4x1

)

and, still as in [8], we take as output y the diCerence
between the total concentration of active receptors and
a steady-state level of this activity. In terms of the no-
tations used here, and up to multiplication by a suit-
able constant, this amounts to the following choice:

h(x) = A0 − A= [a1 + a5]− [a2x1 + (a6 − a3)x2]:

We note that Lgh=Dx1, where D=a2a4+(a3−a6)a4.
Except in the accidental case when this con-
stant D vanishes (in terms of the notations in [8],
D=k−1IT kr(21−22), so D can only vanish if 21=22),
we have that Lgh(x) 	= 0 for all x (x1 ¿ 0, as it rep-
resents a concentration), and so it follows that � has
well-deHned relative degree r = 1. Moreover, )1 = g̃
is a constant vector, so Assumptions 2 and 3 hold as
well.

A minor technicality concerns the assumptions that
our systems (1) evolve in all of Euclidean state space
(not just xi ¿ 0) and that f(0) = h(0) = 0. How-
ever, this is just a matter of picking the right coordi-
nates. Notice that f vanishes at x0 = (x01 ; x

0
2), where

x01 = (a1a6 + a3a5)=(a2a6) and x02 = a5=a6, and h van-
ishes at x0 too. In order to Ht into the general theory,
one simply changes variables, mapping the positive
orthant into all of R2 and x0 into the origin by means
of x′i =ln xi − ln x0i . (Of course, there is no need to ac-
tually perform the coordinate change, since conditions
expressed in terms of Lie derivatives are covariant.)
Finally, letting B := x1 + x2 (as done in [8]), one

obtains a system of equations in terms of the new vari-
ables A and B, for which Ḃ = y. This last equation
represents an integrator (internal model of a system
which produces constant inputs) driven by the output
y. (Of course, there is no point in applying the theo-
rem, since once that the model is given we can Hnd
the internal model explicitly.)

3. Proof of Theorem 1

Suppose that the system � adapts to inputs in U,
which are produced by a Poisson-stable exosystem �.
We consider the interconnected system consisting of
the cascade of � and �, as shown in Fig. 4, namely

ẇ = Q(w);

ẋ = f(x) + ,(w)g(x) (7)

and letZ denote the set consisting of those states x of
� for which h(x) = 0 (the “output-zeroing” subset).

Lemma 3.1. For each w0 there is some solution 4=
(w(·); x(·)) of composite system (7) such that w(0)=
w0 and x(t)∈Z for all t¿ 0.

Proof. We start by picking an arbitrary solution 40 =
(w(·); x(·)) of the composite system (7) such that
w(0) = w0, and let 5 = 5+[40] be the omega-limit
set of this trajectory. We claim that, for each point
(!; 6)∈5 (we partition coordinates into those for �
and �) it must be the case that 6∈Z. Indeed, by def-
inition of 5 there is some sequence of times ti → ∞
such that x(ti) → 6. Since h(x(ti)) → 0 because of
the adaptation property and h is continuous, it fol-
lows that h(6) = 0, as claimed. Next, we claim that
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there is some x0 such that (w0; x0)∈5. To see this,
we Hrst pick a sequence of times ti → ∞ such that
w(ti) → w0 (Poisson stability is used here); as {x(ti)}
is bounded, we may pick a subsequence tij of the ti
so that x(tij) → x0 for some x0, and this proves that
(w0; x0)∈5, as wanted.
Finally, we let 4 be the solution 4 = (w(·); x(·))

of the composite system (7) for which w(0) = w0

and x(0) = x0, where x0 is so that (w0; x0)∈5.
Omega-limit sets are invariant, so 4(t)∈5 for all
t¿ 0, and we already proved that this last property
implies that x(t)∈Z.

Proposition 9.1.1 in [9] shows that there is a global
diCeomorphism # so that, in the new coordinates, the
system � takes the form shown in display (3). More-
over, the subsystem described by z1 evolves in Rr and,
using coordinates z1 = (81; : : : ; 8r), the equations for
z1 can be written as

8̇1 = 82

...

8̇r−1 = 8r

8̇r = b(z1; z2) + a(z1; z2)u; (8)

where the output is y=�(z1)= 81 and a; b are smooth
functions with a(z) = LgLr−1

f h(#−1(z)) 	= 0 for all z.
We let

’(z2) := −b(0; z2)
a(0; z2)

and show that for each possible u∈U there is some
solution of (4) which satisHes ’(z2(t)) ≡ u(t).

We pick w0 such that u(t)=,(w(t)) and w(0)=w0,
and view the interconnection (7) of � and � in terms
of the coordinate change given by # on �:

ẇ = Q(w);

ż1 = f1(z1; z2) + ,(w)g1(z1; z2);

ż2 = f2(y; z2):

Lemma 3.1 gives us the existence of a solution 4 =
(w(·); z1(·); z2(·)) such that ,(w(t))=u(t) and 81(t) ≡
0. Because of form (8) of the z1-subsystem, this im-
plies that z1(t) ≡ 0 and that 8̇r(t) ≡ 0. Thus, along the
solution 4 one has b(0; z2(t)) + a(0; z2(t))u(t) ≡ 0,
and this is precisely what we wished to prove.

Remark 3.2. Assumptions 2 and 3 are automatically
satisHed for linear systems, since the vector Helds )i

are all constant, so that they are indeed complete and
pairwise commutative. For general nonlinear systems,
these assumptions, especially Assumption 3, are quite
strong. Weaker conditions may be given, if one is
merely interested in a local result, or if one is will-
ing to accept a subsystem �IM which is driven by not
just y but also several derivatives of y. Indeed, as-
suming merely a well-deHned relative degree around
a given point x0, we obtain a decomposition as in (3)
(see Section 4.3 in [9]) except that the change of co-
ordinates is now only valid in a neighborhood of x0,
and f2 now depends on (z1; z2) (as opposed to (y; z2).
Note that, from the form (8), z1 is the vector con-
sisting of the derivatives y; y′; : : : y(r). If condition 2
holds, but 3 does not, then a global decomposition is
possible, but f2 still depends on derivatives of y (cf.
[9, Proposition 9.1.1]).

A remark on subsystems: We expressed our the-
orem in terms of the existence of solutions which
reproduce all inputs. Under additional and stronger
hypotheses, one could also obtain an actual embed-
ding of the exosystem in the internal model �IM . A
full nonlinear version would involve abstract quotients
of systems under suitable equivalence relations, and
may follow along the lines of the work in [5] (based
on [7]). However, the necessary steps are easy to un-
derstand and prove in the case of linear systems. We
start by showing the following elementary fact from
linear systems theory

Lemma 3.2. Suppose given an observable linear sys-
tem ẇ = Qw, y = ,w and another linear system
ż2 = Fz2 +Gy, u=’z, and assume that for each w0

there is some z0 such that ’etF z0 = ,etQw0 for all
t¿ 0. Then, the matrix F is similar to a matrix with
this block structure:


Q 0 0

D E 0

F G H


 : (9)

Proof. We Hrst assume that the pair (F; ’) is observ-
able, and claim that for each w0 there is a unique z0

such that ’etF z0 ≡ ,etQw0. This is because ’etF z0 ≡
’etF z1 implies z0 = z1 (observability). So we can
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deHne a map T : w0 
→ z0. This map is one-to-one, by
observability of the pair (Q; ,). It is also linear, since
,etQ(2w0 + w1) = 2,etQw0 + ,etQw1 = 2’etFTw0 +
’etFTw1=’etF(2Tw0+Tw1) means that 2w0+w1 
→
2Tw0 + Tw1. It also satisHes FT = TQ, since taking
derivatives in ’etFTw0 ≡ ,etQw0 gives ’etFFTw0 ≡
,etQQw0 which means that Qw0 
→ FTw0. Thus, on
some invariant subspace (the range of T ), F can be
written as Q, which means that we can write F up to
similarity in the form(

Q ∗
0 ∗

)
:

Since F is similar to its transpose, and Q is similar to
its transpose, F is also similar to a matrix in the form(

Q 0

∗ ∗

)
:

An observability decomposition [13, Chapter 6] then
reduces to the observable case.

Without loss of generality, one may assume that
linear exosystems are observable (there always exists
an observable equivalent). We now apply Lemma 3.2
to the exosystem and the internal model �IM , assumed
linear. There results a change of variables for �IM so
that, in the new variables, a subset 8 of the variables z2
of �IM , corresponding to the Hrst block in (9), evolves
according to an equation of the form 8̇=Q8+by, for a
suitable vector b. This provides the desired embedding
of the exosystem in the internal model.
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