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Technical  Notes and  Correspondence 
Note  to the  Reader: The following  paper  has  spurred  much  discussion 

in the adaptive  controls  community for a  number of years now.  Because of 
the subsequent  research it generated, a  commentary  was  felt to be 
appropriate. Hen?,  at the end of this paper, read on for some insight 
provided  by Karl Astrom. 

RAY DECARLO 

Robustness of Continuous-Time Adaptive Control 
Algorithms in the Presence of Unmodeled Dynamics 

CHARLES E. ROHRS,  LENA  VALAVANI,  MICHAEL 
ATHANS, AND GUNTER  STEIN 

Abstruct-This paper examines the robustness  properties of existing 
adaptive control algorithms to unmodeled plant high-frequency  dynamics 
and unmeasurable output disturbances. It is demonstrated that there exist 
two infinite-gain operators in the nonlinear  dynamic  system  which 
determines the time-evolntion of output  and parameter errors. The 
pragmatic implication of the existence of such infiite-gain operators is 
that 1) sinusoidal  reference inputs at specific  frequencies and/or 2) 
sinusoidal output disturbances at any frequency  (including  de), can cause 
the  loop gain to increase without bound, thereby  exciting the unmodeled 
high-frequency  dynamics, and yielding an unstable control system. 
Hence, it is concluded that existing adaptive control algorithms as they 
are presented in the literature referenced in this paper, cannot be  used 
with  confidence  in practid designs  where the plant contains unmodeled 
dynamics because  instability  is  likely to result. Further understanding  is 
required to ascertain how the currently  implemented adaptive systems 
differ from  the^ theoretical  systems  studied  here and how further 
theoretical  development  can improve the robustness of adaptive control- 
lers. 

I. INTRODUCTION 

This paper  reports the outcome  of an investigation of the stability and 
robustness  properties of a  wide  class  of  adaptive  control  algorithms  in the 
presence  of  unmodeled  high-frequency  dynamics and persistent unmea- 
surable output  disturbances.  Every  physical  system  has  such  (parasitic) 
high-frequency  dynamics;  in  nonadaptive  designs  these  limit the cross- 
over frequency  and require the control  system to contain  adequate  gain 
and phase  margins. Also, every  control  system  must be able to operate  in 
the presence of  unmeasured and possibly  persistent  disturbances  without 
going  unstable. In nonadaptive linear control  designs the presence of 
disturbances does not  impact upon the closed-loop  stability  issue. 

It should be stressed  that the existing  adaptive  control  algorithms,  when 
used to control an unknown linear time-invariant  plant,  result  in  a  highly 
nonlinear and  time-varying  closed-loop  system  whose  stability  does 
depend  upon the external inputs (reference inputs and disturbance  inputs). 
Hence, it  is important to analyze the stability  of the adaptive  closed-loop 
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design and to inquire about its global  stability  properties. This has 
provided the motivztion  for the research  reported  in  this paper. 

Due to space limitations  we  cannot  possibly  provide  in  this  paper 
analytical  and  simulation  evidence  of  all  conclusions  outlined  in the 
Abstract. Rather, we summarize the  basic  approach  only for a  single  class 
of continuous-time algorithms that  includes  those of Monopoli [14], 
Narendra and Valavani [l], and Feuer and Morse [2]. However, the same 
analysis  techniques have been used to analyze more complex  classes  of (1) 
continuous-time  adaptive  control  algorithms due  to Narendra, Lin, and 
Valavani [3], both algorithms suggested by Morse [4], and the algorithms 
suggested by Egardt [q which  include  those of Landau and  Silveira [6], 
and  Kreisselmeier [19]: and (2) discrete-time  adaptive  control  algorithms 
due to Narendra  and  Lin [22], Goodwin, Ramadge,  and  Caines [5] (the 
so-called dead-beat  controllers), and thost developed  in  Egardt [ l q ,  
which  include  the  self-tuning  regulator  of  Astrom  and  Wittenmark [ 181 
and  that due  to Landau [20]. The thesis by Rohrs [ 151 contains the full 
analysis and simulation  results for the above classes  of  existing  adaptive 

The end of the 1970’s marked  significant  progress in the theory  of 
adaptive control, both in t e r n  of  obtaining  global  asymptotic  stability 
proofs [1]-[7  as well as in  unifying diverse adaptive  algorithms, the 
derivation  of  which  was  based on different  philosophical  viewpoints [8], 

Unfortunately, the stability  proofs of all these algorithms  have  in 
common a very  restrictive  assumption. For continuous-time  implementa- 
tion thii assumption is that the number of poles minus the number of zeros 
of the plant, i.e., its  relative degree, is known. The counterpart of this 
assumption for the discrete-time  systems  is  that  the  pure  delay  in the plant 
is exactly  an  integer  number of sampling periods and  that thii integer is 
known.  It  is also assumed  that  an u p p r  bound for the number  of  poles  in 
the  plant is known in both the continuous-time  and  discrete-time 
formulation. Finally, global parameter convergence  requires  that the 
inputs  satisfy  a  “sufficiently rich” condition. 

The restrictive  relative degree assumption,  in turn, is  equivalent to 
enabling the designer to realize for an adaptive algorithm, a  positive real 
error transfer function, on which  all  stability  proofs  have  heavily  hinged 
to-date  [8].  Positive  realness  implies  that the phase  of the system Cannot 
exceed & 9 0 ”  for all frequencies,  while  it  is  a  well-known  fact  that  models 
of  physical  systems  become  very  inaccurate  in  describing  actual  plant 
high-frequency phase characteristics. Moreover, for practical reasons, 
most  controller  designs  need to be  based on models  which do not  contain 
all of the plant  dynamics,  in order to keep the complexity  of the required 
adaptive  compensator  within bounds. 

Motivated from such  considerations,  researchers  in the field  in the early 
1980’s began investigating  the  robustness  of  adaptive  algorithms to violation 
of  the  restrictive (and unrealistic)  assumption  of  knowledge of the  plant 
order  and  its  relative  degree.  Ioannou  and  Kokotovic  [IO]  obtained error 
bounds for  adaptive  obselvers  and  identifiers  in  the  presence  of 
unmodeled  dynamics,  while  such  analytical  results  were harder to obtain 
for reduced-order  adaptive  controllers. The first  such  result,  obtained by 
Rohrs et ai. 11  11, consists of “linearization” of the error equations,  under 
the assumption  that the overall  system  is  in  its  final  approach to 
convergence. Ioannou and Kokotovic  [12] later obtained  local  stability 
results in the presence  of  unmodeled  dynamics,  and  showed  that the speed 
ratio of slow versus  fast  (unmodeled)  dynamics  directly  affected the 
stability  region.  Even the local  stability  results  of  [12] can only  be  attained 
when the speed ratio is small, i.e., when the unmodeled  dynamics are 
much faster than the modeled  part  of the process. Earlier simulation 
studies  by Rohrs et al. [13]  had  already  shown the high  sensitivity of 
adaptive algorithms to disturbances and unmodeled  dynamics,  generation 
of  high-frequency control inputs  and  ultimately  instability.  Simple  root- 
locus type  plots for the  linearized  system in [ l  I ]  showed  how the presence 
of unmodeled dynamics could bring about  instability of the overall 

algorithms. 
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system. It was also shown there that  the  generated  frequencies  in  the 
adaptive  loop  depend  nonlinearly on the magnitudes of the reference  input 
and output. Kosut  and  Friedlander [23] have also tried to define the class 
of  plant  perturbations  under  which  adaptive  controllers  will  retain 
stability.  They  have also found severe limitations as in [ l l ] ,  on the 
reference  input  and  output  characteristics for which  the  linearized error 
equations are stable. 

The main  contribution of this paper is in  showing  that two operators 
inherently  present  in all algorithms  considered (as part  of the adaptation 
mechanism)  have  infinite  gain. As a  result,  two  possible  mechanisms  of 
instability are isolated and discussed. It  is argued  that  the  destabilizing 
effects  in the presence of  unmodeled  dynamics  can  be  attributed to either 
phase (in the case of  high-frequency  inputs), or, primarily  gain 
considerations  (in  the case of  unmeasurable  output  disturbances of any 
frequency,  including dc), which  result  in  nonzero  steady-state errors. The 
latter fact  is  most  disconcerting  for the performance  of  adaptive 
algorithms  since  it  cannot be easily  dealt  with by additional  filtering, 
given  that  a  persistent  disturbance  of  any  frequency can have  a 
destabilizing effect. 

Our conclusion  is  that the adaptive  algorithms as published  in the 
literature are likely to produce  unstable  control  systems if they are 
implemented on physical  systems  directly as they appear  in the literature. 
The conclusions  stem  from the results of this paper  which  show  unstable 
behavior  of  adaptive  systems  when  these  systems are confronted  with  two 
premises  that  cannot be ignored  in  any  physical  control  design: 1) there 
are always  unmodeled  dynamics  at  sufficiently  high  frequencies  (and it is 
futile to try to model  these  dynamics);  and 2) the  plant  cannot  be  isolated 
from unknown  disturbances (e.g., 60 Hz hum)  even  though  these may be 
small. 

The original  version of this  paper  was  presented as [24]. Since  that 
time, there has  been  a  great  deal  of  research  generated on the robustness 
issues  raised here. In  particular,  it has come to appear  that some problems 
presented  in this paper  may  possibly  be  overcome by sufficient  excitation. 
The following  idea  of  the  use of sufficient  excitation  can be traced  back  at 
least to [25]. By using  sufficient  excitation the nominal  adaptive  system 
can  be  made  exponentially  stable.  Since the system  is  exponentially  stable 
there is some modeling error and some disturbances for which  stability 
will be  maintained. It should  be  noted,  however,  that  the  amount of 
modeling error or the amount of disturbance for which the adaptive 
system  can  maintain  stability may be  extremely small. 

The issue  of  sufficient  excitation  is not considered  here.  It  is  a  complex 
issue  which  will produce many  papers  of  its own. However, the  following 
results  pertaining to sufficient  excitation  should  be  noted.  Since  the  inputs 
which cause destabilization  in this paper  actually  provide the usual 
measure of sufficient  excitation  it  is  clear from these  results  that not just 
sufficient  excitation  is  needed  by  sufficient  low-frequency  excitation. 
Ioannou  and  Kokotovic [lo] used the term “dominantly  rich  excitation” 
in  their  investigation of the concept. Since the publication of [24], Krause 
ef ai. [26] have analyzed the infinite  gain  operator  more  deeply  and 
extended the analysis of this paper  in  a  significant  way  to  include the 
effects of the  richness of input  in the stability  analysis. The results  of the 
analysis  of [26] show  that the input  must  not  only be sufficiently  exciting 
to produce  parameter  convergence  in the nominal  system,  but  that the 
input  must  be  dominantly  rich  enough to overcome the destabilizing 
effects  discussed here. Thus, sufficient  excitation  should  not  be  viewed as 
a  panacea  which creates robust  adaptive  controllers  but as a  stabilizing 
effect  in  a  delicate  engineering  tradeoff. 

In  Section 11 the infinite gain of  the  operators  generic to the adaptation 
mechanism  is  displayed.  Section III contains the development  of  two 
possible  mechanisms for instability  that arise as a  result  of  the  infinite  gain 
operators. Simulation  results  that  show  the  validity  of  the  heuristic 
arguments in Section ID are presented in Section IV. Section  V  contains 
the conclusions. 

n. THE ERROR MODEL. STRUCTURE FOR A REPRESENTATION 
ADAPTIVE ALGORITHM 

The simplest  prototype for a  model  reference  adaptive  control 
algorithm  in  continuous-time  has  its origins to  at least as far  back as 1974, 
in the paper  by  Monopoli [ 141. This algorithm  has  been  proved 
asymptotically  stable  only for the case when  the  relative  degree of the 

Model 

Fig. 1. Controller structure of CA1 with additive output disturbance d(r). 

plant is unity or at most two. The algorithms  published  by  Narendra  and 
Valavani [ l ]  and Feuer and Morse [2] reduce to the same  algorithm for 
the pertinent case. This algorithm will henceforth be referred to as CAI 
(continuous-time  algorithm  No. 1). 

The following  equations  summarize the dynamical  equations  that 
describe  it; see also Fig. 1 .  The equations  presented here pertain to the 
case where  a  unity  relative degree has  been  assumed. In the equations 
below, r(t) is the (command) reference input  and the disturbance d(t) in 
Fig. 1 is  equal to zero. 

plant: 

auxiliary 
variables: 

model: 

control 
input: 

output 
error: 

parameter 
adjustment  law: 

nominal 
controlled  plant: 

error 
equation: 

u( f )  = kT( f )w( f )  = k*‘(t)w(r) + CT(f)W(f) 

= k* ‘ ( f ) W ( f )  + a( f )  

+ - - [ T I .  g*B*(s) A * (SI A T ( f ) W ( f )  

In the above equations the following  definitions apply: 

k ( f )  k* + &(f)  

where k* is a constant 2n vector. 
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NOMINALLY CONTROLLED 
PLANT d ( t )  

Fig. 3. Block diagram of a  generic adaptive controller. 

Kas) 6 k&- I p n - 2 +  k;* ( , -2 )~”-~+  . * . + kzl 

where k:i is the ith component of kz. 

K ~ s ) ) k , ~ s ” - ’ + k ~ ” - , ) s “ - 2 +  ... +kJ 

where k$ is  the ith component of k;. In the preceding equations we have 
tried to preserve the conventional literature notation [3]-[5], with P(s) 
representing the characteristic polynomial for the state variable filters and 
&t) the parameter misalignment vector. In (8) g*B*(s)/A*(s) represents 
the closed-loop plant transfer function that would result if A were 
identically zero,  Le., if a constant control law k = k* were used. Under 
the conventional assumption that the plant relative degree is exactly 
known and, if Bds) divides P(s), then k* can be chosen [l], such that 

If  the relative degree assumption is violated, g*B*(s)/A*(s) can  only get 
as close to g,&As)/A,&) as the feedback structure of  the controller 
allows. The  first term on  the right-hand side of (9) results from such a 
consideration. Note that  if (1  1) were satisfied, (9) reduces to  the familiar 
error equation form that has appeared in the literature [8] for exact 
modeling. For more details the reader is referred to  the literature cited  in 
this section as  well as to [15]. 

Fig. 2 represents, in  block diagram form, the combination of parameter 
adjustment law and error equations described by (7) and (9). 

In general, existing continuous-time algorithms [I]-[9] can be classi- 
fied into four groups labeled here and in 1151 as CA1,  CA2,  CA3, CA4, 
respectively, for continuous-time algorithms 1 , 2 , 3 , 4 .  Fig. 3 represents a 
generalized error  structure which can be particularized to describe the 
error loop of  any one of the existing adaptive algorithms, both  in 
continuous time and (by its  discrete analog) in discrete time as well. In 
Fig. 3, the forward loop consists of a positive real transfer function, while 
the feedback path comprises the adaptation mechanism (parameter 
adjustment), which contains the infinite gain operator(s). In  the figure, the 
error system input 2(t) is synthesized according to 

ri(r)=P(t)Cp(t) ,  u(t)l 

f ( t )  =F(s)   [D[Hf) ,  u(t)le(t)l 
I 

where 
C is a linear time-invariant system representing an observer or 

an auxiliary state generator 

Fig. 4. The infinite gain operators of  CA2, CA3, and CA4. 

M is  usually a memoryless map, often the identify map 
D is a linear time-invariant system analogous to C and  often 

identical to it 
<(s) a stable  transfer function, often the identity 
k(t), f i t )  parameter error vectom related by &(to = mt)]. 

The above-mentioned four classes of adaptive algorithms have i:: 
common the error feedback loop structure and the basic ingredients of the 
parameter update mechanism, i.e., multiplication-integration-multiplica- 
tion, which forms the feedback part of the loop and is shown [15] to 
constitute the infinite  gain  operators present in all existing adaptive 
algorithms. These operators  are shown  in Fig. 4 as they  apply specifically 
to CA2, CA3, CA4. Analogously, the discrete-time algorithms are 
classified into three distinct groups, DAl, DA2, D M .  The four classes 
mentioned  in the preceding differ in the specific parameterization that 
realizes the positive real transfer function in the forward path and in the 
particular details of  the parameter adjustment laws [choice of C, D ,  M,  
F(s)]. For example, in the simplest class of continuous-time adaptive 
algorithms (CAI) under perfect modeling, the forward transfer function 
represents the reference model transfer function, which *e controlled 
plant is able to  match exactly, by assumption (1 1). Unfortunately, when 
unmodeled dynamics are present, the controlled plant can only  match the 
reference model  only up to a certain frequency range and, thus, the 
forward loop transfer function which represents the nominally controlled 
plant and determines the  error dynamics, loses its positive realness 
property. This, in conjunction with the infinite gain operator(s) in the 
feedback loop, can bring about instability. 

IU. THE INFINITE GAIN OPERATORS 

A .  Quantitative Proof of Infinite  Gain for Operators of CAI 

The  error system in Fig. 2 consists of a forward linear time-invariant 
operator representing the nominal controlled plant complete with unmo- 
deled dynamics g*B*/kFA*, and a time-varying feedback operator. It is 
this feedback operator which is of immediate interest. The  operator, 
reproduced in  Fig. 5 for the case where w is a scalar and r = 1 ,  is 
parameterized by the function w(t) and can be represented mathematically 
as 

W )  = Gwtn[e(t)l = go+ w(t)  j‘ w(7)e(7) d7. (12) 
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U 

Fig. 5 .  Infinite gain operator of CAI. 

Also 

{lle(t)ll;2}2=a2 F r  sin h o t  d t s a 2 T .  
‘0 

Therefore, 

In order to make the notion of the gain of the operator G,(t) (.) precise, Ila(t)lli2 
we introduce the following operator theoretic  concepts. Ile(Oll;, 

truncated  norm 
Definition I: A functionflt) from [0, m) to R is said to be  in Lk if the 

[( I 2  ) 1 02b2c2 cos2 Q a2e4 cos2 @I 

l l f t o l l ~ 2 ~ (  1:?(7) d7)’” (1 3) 2 24 aT1l2 

+ P - K 2 P - K , T - K o  
1;2 

is finite for all finite T. 

L2 into  functions in Lk is  defined as 
Definition 2: The gain  of an operator Glf(t)], which  maps  functions  in 

T-. m 
--e3 

and, therefore, G ,  for w as in  (15) has infinite gain. 
IlGV(t)lllL 

J7f)€L, Ilr(t)lll, . 
In  addition to the fact  that the operator G,(t) from e(t) to C(t) has 

(14) infinite gain, the operator ff,, from e(t) to &) in Fig. 5 also has  infinite llGll= SUP 
gain. This operator is described  by 

TE [O. 

If there is no finite  number  satisfying (14), then G is  said to have  infinite 
gain. 

Theorem 1: If w(t) is  given by 
Theorem 2: The operator HN,) with w(t)  given  in  (15)  has  infinite  gain. 

w(t) = b + c sin wot (15) Proof: Choose e(t) = Q sin wot as before.  Then [(to = Hyo[e(t)] is 
given by (18). Proof of infinite gain for this operator then  follows  in 

Proof: The proof  consists of constructing  a  signal e@), such  that Remark I :  Both operators G ,  and H ,  will also have  infinite gain for 
for any  positive  Constants b,  C ,  wo, the operator  of (12) has infinite  gain.  exactly  analogous  steps as in Theorem 1 and is, therefore, omitted. 

., 
vectors ~ ( t ) ,  since the operators’  infinite  gains  can arise from any 

(16) component of the vector w(t). 

is unbounded. 
Let e(t) = a sin (wot + 6) with a an arbitrary positive  constant, 6 an 

arbitrary phase  shift,  and wo the same  constant as in (15). These signals 
produce 

w(t)e(t) = ab(sin wof cos 4 +COS wo sin 6) 

+ uc sin  &(sin wot cos Q + cos mot sin +) (17) 

1 
2 

=$+- QC cos . t +constant  terms + periodic  terms (18) 

C(r) = G,(t)[e(t)] = Go + w( t )  j‘ w(r)e(r) dr 

B. Two Mechanisms  of  Instability 

In this section,  we use the algorithm CA1 to introduce  and  delineate 
two mechanisms  which  may cause unstable  behavior  in  the  adaptive 
system CAI, when  it  is  implemented  in the presence of unmodeled 
dynamics  and  excited by sinusoidal  reference  inputs or by disturbances. 
The arguments  made  for CAI  are also valid  for  other  classes  of 
algorithms  mentioned  in  Section II mufatk mutandis. Since the 
arguments  explaining  instability are somewhat  heuristic  in  nature,  they 
are verified by simulations.  Representative  simulation  results are given  in 
Section IV. 
In order to demonstrate the infinite  gain  nature  of  the  feedback  operator 

of  the error system  of CAI in  Section II, it  is  assumed  that a component  of 
w(t) has the form 

wi(t) = b + sin Wot (26) 

== (ubc+ ac2 sin wof)t + constant  terms + periodic  terms.  and  that the error has the form 2 
(19) e(t)=a sin (wot+Q). (27) 

- ( K ; T ) l / 2  (20) have  distinct  sinusoids  at  a  common frequency, the operator GW of (12) 

Next, using  standard  norm  inequalities, we obtain from (19) 
The arguments  of  Section II indicate  that,  if e(t)  and  a  component of w(f )  

Ilc(t)ll;2, - cos Q+- ac2t sin !I 1 
2 and the operator HKfI) of (25) will have  infinite  gains. Two possibilities for 

e(t), w(t) to have the forms of (26) and  (27) are now  considered. 

e.g., 
with Ki a  finite  constant.  Now Case I :  If the reference  input  consists  of  a  sinusoid  and  a  constant, 

1 
2 I/ f abct cos 6 +- ac’t cos Q sin wot (21) r(t)=r,+r2 sin od (28) 

[ a 2 b 2 c ~ x x 2  Q 02c4 cos’ Q 
where rl and r2 are constants,  then the plant  output y(t)  will contain  a 

24 constant  term and a  sinusoid at frequency wo with an arbitrary phase shift + T 3 - K 2 P + K , T + K o  (22) 

( a 2 b 2 c ; y 2  @ a2c4 cos2 6 
If the controlled  plant  matches the model  at dc but  not  at  the  frequency 

( l l~(oI l ; ’ )2~ + T’ - ~~p - K~ T-  K ~ .  wo, the  output error 
24 
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will contain a sinusoid at frequency w0. Thus, the conditions for infinite 
gain  in  the feedback path  of Fig. 2 have  been attained. 

Case 2: If a sinusoidal disturbance, d(t), at frequency ~0 enters the 
plant output as shown in Fig. 1, the sinusoid  will appear in w(t) through 
the following equation, which replaces (3) in  the presence of  an output 
disturbance: 

wYi(t)=-@(t)+d(t)];  i = l ,  2, n.  

The following equation replaces (6) when an output disturbance is present 

e(t)   =v(t)  + d(t)  - Y M ( ~ ) .  (3 1) 

I 

P(S) 
(30) 

Any  sinusoid present in d(t) will also enter e(t) through (31). Thus, the 
signals e(t) and w(f)  will contain sinusoids of the same frequency and  the 
operators H,,,) and GWcr) will display an infinite gain. 

1) Instability Due to the  Gain of the Operator G ,  of (12): The 
operator G, of (12) is  not  only  an infinite gain operator but its gain 
influences the system in  such a manner as to  allow arguments using linear 
systems concepts, as outlined below. 

Assume, initially, that the  error signal is of the form of (27), i.e.,  a 
sinusoid  at frequency ~ 0 .  Assume also that a component of w(t) is of the 
form of (26), i.e.,  a constant plus a sinusoid at the same frequency wo as 
the input. The output of the infinite gain operator GWco of (12), as  given by 
(19), consists of a sinusoid at frequency 00 with a gain  which increases 
linearly with time plus other terms at 0 rads (i.e., dc) and other 
harmonics of w0, Le., O(t)  = 112 acZt sin mot cos 6 + other terms. 

The infinite gain operator manifests its large gain by producing at the 
output a sinusoid  at  the  same frequency, w0, as the input  sinusoid  but 
with an amplitude increasing  with time. By concentrating on the signal 
at frequency u0, and  viewing the operator GWcr) as a simple time- 
increasing gain  with  no phase shift at the frequency coo,. and  very small  
gain at other frequencies, we will be able to  come  up  with a mechanism 
for instability of the error system of Fig. 2, where GMo consists of the 
feedback part of the loop. If the forward path g*B*(s)/ka*(s), of  the 
error loop of Fig. 2, has less than k 180" phase shift at the  frequency WO, 

and  if the gain of G,(,) were indeed  small at all other frequencies, then the 
high  gain  of G,,,) at wo would  not affect the stability of  the error loop. If, 
however, the forward loop, g*B*(s)/kTA*(s) does have 180" phase shift 
at wo, the combination of this phase shift with the sign reversal will 
produce a positive feedback loop around the operator GWio, thereby 
reinforcing the sinusoid at the input of GWfr). The sinusoid will then 
increase in amplitude linearly with time, as  the  gain  of G,) grows, until 
the combined gain of Gdr) and g*P(s)/k7A*(s) exceeds unity at the 
frequency wo. At this point, the loop  itself  will become unstable and all 
signals will grow without  bound  very quick (as the effects of the unstable 
loop and continually growing gain  of G,, compound). 

Since the infinite gain  of GWcr) can be achieved at  any frequency wo, if 
g*B*(s)/kTA*(s) has f 180" shift at any frequency, the adaptive system 
is susceptible to instability from either a  reference input or a disturbance. 

Thus, the importance of the relative degree assumption, which 
essentially allows one to assume that g*B*(s)/kFA*(s) is sbictly positive 
real is seen. The stability proof CAI hinges on the assumption that 
g*B*(s)/kTA*(s) is strictly positive real and that G%,) is passive, Le., J, G + + w I ~ ( ~ )  dt=o. (32) 

Both properties of positive realness and passivity are properties which are 
independent of the gain of the operator involved. However, it is always 
the case that, due to the inevitable unmodeled dynamics, only a 
bound is known on the gain of the plant at high frequencies. 
Therefore, for a  large class of unmodeled dynamics with relative degree 
two or greater, the operator g*B/kTi*, will  have f 180" phase shift at 
some frequency and  be susceptible to unstable behavior  if  subjected to 
sinusoidal reference inputs andor disturbances in that frequency range. 

2) Instability Due to the  Gain of the Operator H ,  of (25): In the 
previous subsection, the situation was examined where the amplitude of 
the sinusoidal error e(t) grew with  time due to a positive feedback 
mechanism  in the error  loop. In this subsection, we explore the situation 

where the sinusoidal error e@), is not at  a frequency where it will grow 
due to the error system but,  rather, when there exist persistent steady-state 
errors. Such a persistent error could easily arise when  an output sinusoidal 
disturbance d(t) enters  as shown in Fig. 1, causing the persistent sinusoid 
directly on e(& through (31), and w(t) through (30). 

Assume that a component of w(t) contains a sinusoid at frequency wo as 
in (26) and that e(t) contains a sinusoid of  the same frequency. Then the 
operator H&, has infinite gain  and the norm of  the-output  signal of this 
operator, &), increases without bound. The signal k(t) will take the form 
of (18), repeated here 

1 
2 L(t) = Eo + - act  cos ++constant terms + periodic  terms. 

From the second term one can see that theparameters of the controller, 
defined in (lo), i.e., k(t) = k* + @), will  increase  without bound. 

If there are any unmodeled dynamics at all, increasing the size of the 
nominal feedback controller parameters without  bound  will cause the 
adaptive system  to  become unstable. Indeed, since it is  the  gains  of the 
nominal feedback loop that are unbounded, the system  will  become 
unstable for  a  large class of plants including all those whose relative 
degree is  three or more, even if  no  unmodeled dynamics are present. 

It should be noted that the arguments of this section have  assumed that 
the reference input or the disturbance is purely sinusoidal. Since the 
adaptive system is nonlinear and the principle of superposition does not 
apply,  the presence of a sinusoidal component  in a signal will  not 
necessarily give  rise to the same effects. However, all that is needed for 
the argument given to  apply  is that a dc  component result from a 
correlation between the output and the error. The dc component  in  the 
correlation will produce parameter drift.  Thus, any disturbance whose 
spectrum shows frequency peakmg  will produce instability. 

IV. SIMULATION RESULTS 

In this section the arguments for instability presented in the previous 

The simulations were generated using a nominally first-order plant  with 
sections are shown to be valid  via simulation. 

a pair of complex but  highly  damped  unmodeled poles, described by 

2 229 
y(t)=- . 

(sfl)  (s2+30S+229) [ W ) I  

and a reference model 

(33) 

(34) 

The simulations were  all initialized with 

k,(O) = - 0.65; k,(O) = 1.14 (35) 

which yield a  stable linearization of the associated error equations. For  the 
parameter values  of ( 3 9 ,  one finds that 

g*B*(s) 527 -- - 
A *(s) s3 + 3 Is2 + 259s + 527 . 

The reference input signal was chosen based  upon the discussion of 
Section  III-B-2 

r(f)=0.3+1.85 sin 16.lt, (37) 

the frequency 16.1 rad/s being the frequency at  which the plant  and the 
transfer function  in (42), i.e., g*B*(s)/k?A*(s), have 180" phase lag.  A 
s m a l l  dc offset was provided so that the linearized system  would  be 
asymptotically stable. The relatively large amplitude, 1.85 of the sinusoid 
in (37) was chosen so that the unstable behavior  would occur over a 
reasonable simulation time. The adaptation gains were set equal to unity. 

A .  Sinusoidal Reference Inputs 

Fig. 6 shows the plant output and parameters k,(t) and kdt) for the 
conditions described so far. The amplitude of the plant output at the 

Authorized licensed use limited to: Maxim Raginsky. Downloaded on October 26,2020 at 14:53:55 UTC from IEEE Xplore.  Restrictions apply. 



886 IEEE TRANSACTIONS  ON  AUTOMATIC CONTROL, VOL. AC-30, NO. 9, SEPTEMBER 1985 

90, I '  

-9.0 1 I 1 II 
0 2 4 6 8 IO 12 14 16 18 20 

T I M E  

-2.0 I I , I J 
0 2 4 6 8 IO 12 14 16 18 20 

TIME 

-121 I I 1 

0 2 4 6 8 IO 12 14 16 I8 20 
TI  ME 

Fig. 6. Simulation of CAI with unmodeled dynamics and r(t) = 0.3 + 1.85 sin 16.1 t .  
(System becomes unstable.) 

critical frequency (wg = 16.1 rads) and the parameters grow linearly 
with time until the Imp gain  of the error system becomes larger than 
unity.  At this point in time, even though the parameter values are well 
within the region of stability for  the linearized system, highly unstable 
behavior results. 

Fig. 7 shows the results of a simulation, this time with the reference 

r(t) = 0.3 + 2.0 sin 8.0t. (38) 

This simulation demonstrates that, if the sinusoidal input is  at a frequency 
for  which the nominal controlled plant does not generate a large phase 
shift, the algorithm may stabilize despite the high gain operator. 

Similar results were obtained for the algorithms described in [3], [4], 
[6], [7], [9], but are not included here  due to space considerations. The 
reader is  referred  to [15] for a more comprehensive set  of simulation 
results,  in which instability occurs for various sinusoidal inputs. 

input 

B. Simulations with Output Disturbances 

The results in this subsection demonstrate that the instability mecha- 
nism explained in Section III-B-1 does indeed occur when there -is an 
additive unknown output disturbance at the wrong frequency, entering the 
system as shown in Fig. 1. In addition, the instability mechanism of 
Section HI-B-2 which will drive the algorithms unstable when there is a 
sinkoidal disturbance at anyfrequency, is also shown to take place. The 
same numerical example is employed here as well. 

Instability Via  the  Phase  Mechanism of Section III-B-I: In this 
case, CA1 was driven by a constant reference input 

r(t)=2.0 (3 9) 

with an output additive disturbance 

d(t)=0.5 sin 16.1t. (40) 

The results are shown in Fig. 8, and instability occurs as predicted. 
Instability Via the Gain  Increase Mechankm of Section  111-8-3: 

Fig. 9 shows the results of a simulation of CA1 that was generated with 

r=2.0 

0 2 4 6 8 IO 12 14 16 18 20 

Fig. 7. Simulation of CAI with unmodeled dynamics and <t) = 0.3 + 2.0 sin 8.0 t .  
(No instability observed.) 

T I M E  

l 2  8 t 

I 
0 8 16 24 32 40 48 56 64  72 

' 5  t 
8 c 

-241 
0 8 16 24 32 4 0  48 56  64  72 

TIME 

@I 
Fig. 8. Simulation of CA1 with highly damped unmodeled dynamics, r(t)  = 2.0 and 

d(r) = 0.5 sin 16.1 f. (System becomes unstable.) 
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Fig. 9. Simulation of CAI with highly dampea unmodeled dynamics, fit) = 2.0 and 

d(z) = 0.5 sin 8 t .  (System becomes unsrable.) 

but the  disturbance was changed to 

& ) = O S  sin st. (41) 

The sinusoidal error signal of increasing amplitude, which is characteris- 
tic  of instability via the mechanism of Section III-B-1, is not  seen  in Fig. 
9. What is seen is that the system becomes unstable by the mechanism of 
Section III-B-2. While the output appears to settle down  to a steady-state 
sinusoidal error, the ky parameter drifts away until the point where the 
controller becomes unstable. (Only the onset of unstable behavior is 
shown in  Fig. 9 in order  to maintain scale.) 

The most disconcerting part of this analysis b that  none  of  the 
systems analyzed with constant set point reference inputs have  been 
able to counter this parameter  drift for a Sinusoidal  disturbance  at 
any frequency  tried! 

Indeed, Fig. 10 shows the results of a simulation run  with reference 
input 

r=0.0 (42) 

and constant disturbance 

d=3.0. (43) 

The simulation results show that  the output settles for a long time  with 
nonzero error but the parameter ky increases in magnitude until instability 
ensues. Thus,  the adaptive algorithm shows no ability to act even as a 
regulator when there are output disturbances. 

However, in  order  to  drive the system unstable with a constant 
disturbance in the same order of  magnitude  of  time as it took to drive the 
system unstable with a higher frequency sinusoid, the magnitude  of the 
disturbance must be much larger in the constant disturbance case. The 
constant disturbance must be larger because the nominal control system 
has a larger gain at dc and thus better disturbance rejection. The  time it 

- 4 1 ' " ' " " " " ' '  
0 80 160 240 320 400 480 560 640 720 800 880 960 1040 1 1 2 0  

TIME 

(a) 
16 

- 3 2 ~ " " " " " " ' ~  
0 80 160 210 320 400 480 560 640 720 800 880 960 I040 1120 

(b) 
TIME 

Fig. 10. Simulation of CAI with highly dam@ unmodeled dynamics, fit) = 0.0 and 
d(t) = 3.0. (System becomes unstable.) 

takes for the system to go unstable is inversely proportional to the square 
of the magnitude of the  part of disturbance still present at  the output of the 
closed-loop controlled system. 

In the previous simulations the unmodeled dynamics which were used 
were highly damped. Fig. 11 shows the results of a simulation of a plant 
with less well damped unmodeled dynamics at a somewhat lower 
frequency and a smaller disturbance. The plant used  in the run is 
described by 

The reference input was again 

r(t) = 2.0. (45) 

The disturbance used was 

d(t)=O.l sin 8t. (46) 

In this case the parameter drift is slower than in Fig. 9. However, the 
parameters need  not drift as far  to cause instability due  to the less benign 
urnodeled dynamics in this case, so the system exhibits unstable behavior 
in approximately the same amount  of  time. 

It is important to understand that the parameters will drift and cause 
instability in these cases no matter how smal l  the disturbances. If the 
disturbance is made smal l  by filtering, the parameters will drift slowly and 
the system will take a long time to become unstable but it  will  indeed 
become unstable if the disturbance persists long enough. Also a 
sinusoidal disturbance at  any frequency will cause parameter drift. 

It appears that the only way to counteract the drift cause by sinusoidal 
disturbance is to swamp out  the effects of the disturbance with probing 
reference inputs. These inputs must be more than sufficiently exciting. 
Further research is needed to quantify the effects of probing signals and 
develop practical guidelines as to their use. 

V. CONCLUSIONS 

In this paper it was shown, by analytical methods and verified by 
Simulation results, that existing adaptive algorithms as described in [I]- 
141, [6], [i'J, [19], have  imbedded in their adaptation mechanisms infinite 
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Fig. 1 I .  Simulation of CAI aith poorly damped unmodeled  dynamics. fit) = 2.0 and 
d(t) = 0.1 sin 8 t. (System  becomes  unstable.) 

gain operators which, in the presence of urnodeled dynamics, can cause 
the following: 

instability, if the reference input is a high frequency sinusoid 
instability, if there is a sinusoidal output disturbance at any 
frequency including dc. 

While  the  first problem can be alleviated by proper limitations on  the 
class of permissible reference inputs, the designer has no control over the 
additive output disturbances which impact his system. Sinusoidal distur- 
bances are extremely common in practice and can produce disastrous 
instabilities in the adaptive algorithms considered. 

Suggested remedies in the literature such as low-pass filtering of plant 
output or  error signal [26],  [7l, [21] will not  work either. It  is shown in 
[ 151 that adding the filter  to the output of the plant does nothing  to change 
the basic stability problem as discussed in Section II-B. It  is also shown in 
[I51 that filtering of the output error merely results in the destabilizing 
input being at a lower frequency. 

Exactly analogous results were also obtained for discrete-time al- 
gorithms as described in [5 ] ,  [ lq,  [18], [20] and  have  been reported in 
r151. 

Finally, unless something is done to eliminate the adverse reaction  to 
disturbances at  any frequency in the presence of urnodeled dynamics, the 
existing adaptive algorithms should  only be considered as alternatives to 
other methods of control in situations where stable control can be 
guaranteed by  possibly switching to known stable backup controllers or by 
implementing other “safety nets.” A deeper understanding of the 
problems presented here may  lead to increased understanding of what 
“safety nets” are applicable and reasonable. 
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in  magnitude to overcome destabilizing  effects from high-frequency 
inputs or noise. 

The heuristic arguments given above are supported  by  analysis  and 
simulations  in [2] and [3]. Differential  equations  which  approximately 
describe the dynamics of the adaptation gains are derived  using  averaging 
methods.  It  is  shown  that  these  equations  have an equilibrium  line  when 
the reference is a step and that the parameters will drift along  this line 
when there are disturbances. It is also shown  that the equilibrium is a 
point for sinusoidal  command  signals. The equilibrium  and  its local 
stability  depend on the frequency of the reference signal. 

It may  justifiably be questioned  if the properties  of the reference  signal 
can  be  postulated.  If  this  cannot  be done the  excitation of the input  signal 
can be monitored.  If the signal is not  properly  exciting,  perturbations  can 
be added, as suggested  by  dual  control theory, or the adaptation  be 
switched  off [4]. Variations of such  schemes are found  in  several  practical 
adaptive  systems [5 ] .  They  may be viewed as implementations of the 
common  sense  rule “don’t fit  a  model to bad data.” 

adaptive  control,” in Proc. 22nd  IEEE Conf. Decision Conrr., San Antonio, In closing I would like to thank you, Charles, for sticking your neck  out 
TX, DE. 14-16. 1983, pp. 977-981. as a young Ph.D. and  challenging “the adaptive  establishment.” I have 

personally  enjoyed our discussions. I have  learned  a  lot from them and 
from  trying to understand  what  happens  in your simulations. 

A Cornmentaw on the C. E. Rohrs et al. Paper 
“Robustness of Continuous-Time Adaptive Control 

Algorithms in the Presence of Unmodeled Dynamics” 

KARL JOHAN ASTROM 

Earlier versions of the above paper  have  been  presented  at  several 
conferences  since 1980. These presentations  have  certainly  contributed 
towards making the sessions on adaptive  control at the CDC Conferences 
lively  and fun. The discussions  have  also  inspired  a  lot  of  work  on 
robustness  of  adaptive  systems  which  have  significantly  contributed to our 
understanding of such systems. It is therefore with  great  pleasure  that I see 
that  the above paper  is  finally  published so that the discussions  can  reach  a 
wider  audience. 

It was  demonstrated  by Robs that  a  simple MRAS with two parameters 
will  behave  peculiarly  when  applied to a  system  with  unmodeled  high- 
frequency  dynamics.  If the reference  signal  is  a step, then  the  system  can 
be driven unstable  by  adding  a small sinusoid  with  proper  frequency to the 
reference or by adding measurement  noise  of  any  frequency. The paper 
explains the observed  phenomena  by  demonstrating  that there are 
operators  with  infinite gain in the  adaptive loop. It is then  pragmatically 
implied  that  this  will  generically  lead to difficulties. 

It  is my opinion  that  this  argument  does  not capture all  the  aspects  of  the 
problem.  Given this opportunity I would  therefore  offer  another  explana- 
tion  of  the  observed  phenomena. The key  elements  of  the  argument are 
that  parameters  cannot be determined  reliably unless the  input  signal  is 
persistently  exciting of the appropriate order [l]. In the  presence  of 
unmodeled  dynamics  it  is also critical  that  excitation  is  achieved by 
signals  in the proper frequency  range. From this viewpoint  the source of 
the  difficulties  is  that the reference  signal  is  a  step  which  is  persistently 
exciting of order one. This means  that  only one parameter  can be 
determined  consistently.  When two parameters are adjusted  they  may  end 
up anywhere on  a curve in  parameter  space  and  they may drift along  this 
curve due to disturbances. In the presence  of  unmodeled  dynamics  the 
parameters  may  then  become so large that the system  becomes  unstable. 
The difficulties can be overcome if  the  input  is  a  sinusoid  which  is 
persistently  exciting  of order two. Two parameters  can  then be deter- 
mined.  Unmodeled  dynamics  will  not  cause  any  difficulties  if the 
frequency  of  the reference signal  is  sufficiently  low  and  sufficiently  large 
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On the Stability of Parallel MRAS with an AEF 

BULENT KERIM ALTAY 

Absstruct-The stability  of  the  parallel  model  reference  adaptive  system 
(MRAS) with  an  adjustable  error  fiiter ( A m  is  discnssed. It is shown 
that  the null solutions of the  parameter  error  vector  and  output  error  are 
asymptotically  stable  if  the  parameter  update  recursion  employs  time- 
varying adaptation  gain  matrix.  The  analysis  proceeds  with  simple 
algebra,  eliminates the strict  positive  realness (SPR) machinery,  and  does 
not  resort to Lyapnnov’s  direct  method  and  hyperstability. 

I. INTRODUCTION 

In  parallel M U S ,  the  adjustable system is  described by the difference 
equation 

Manuscript  received  April 25, 1985. LManuscript received  October 15, 1984. 
The  author is with rhe Department of  Automatic Control. Lund Institute of The is  with  the hpament of ~ l ~ h d  and ~ l ~ ~ ~ ~ ~ i ~ ~  Middle 

Technology,  Lund,  Sweden. East Technical Universicy, Ankara,  Turkey. 

0018-9286/85/0900-0889$01.00 0 1985 IEEE 

Authorized licensed use limited to: Maxim Raginsky. Downloaded on October 26,2020 at 14:53:55 UTC from IEEE Xplore.  Restrictions apply. 


