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Towards a Unified Theory of Parameter Adaptive 
Control: Tunability 

A. STEPHEN MORSE, FELLOW, IEEE 

Abstmct-A conceptual framework is proposed in which a parameter 
adaptive control system is taken to he a feedback interconnection of 
a process Cp and a parameterized controller & ( k )  whose parameter 
vector k is adjusted by a tuner C T .  The framework is general enough to 
encompass almost all of the existing continuous-time parameter adaptive 
control algorithms proposed in the literature for stabilizing linear process 
models. Emphasis is placed on the importance to adaptation of one of 
q ( k ) ’ s  outputs called a tuning error e T ,  which is the main signal 
driving ET. For the closed-loop parameterized system X ( k )  consisting 
of  C, and E&), definitions and characterizations are given of the 
concepts of wtnk tunability and tunability of C ( k )  on a subset E of 
the parameter space 6 in which k takes values. It is proved that it is 
necessary to know a subset E on which C ( k )  is weakly tunable in order 
to he able to construct a tuner ET which adaptively stabilizes E&). 
Using a simple argument based on the concept of an output injection, it 
is proved that if C(k) is tunable on E and CT is a “gradient-like” tuning 
algorithm with certain typical properties, then the closed-loop adaptive 
control system consisting of C ( k )  and CT is “internally stable.” 

I .  INTRODUCTION 
CENTRAL goal of research in adaptive control in recent A years has been to develop algorithms for which closed-loop 

stability can be established under process model assumptions 
which are as weak as possible. For single-input single-output 
continuous time-processes, these assumptions have typically been 
made in terms of the process model transfer function, written in 
the form ga(s) /p(s ) ,  where a(s)  and p(s)  are monic coprime 
polynomials and g is a nonzero constant called the high frequency 
gain. The classical process model assumptions are that: 1 )  a(s)  
is stable (i.e., the process is minimum phase); and that 2 )  the 
sign of g, 3) the relative n* = degree (p (s ) )  -degree (~(s) ) ,  and 
4) a bound n 2 degree(P(s)) are all known. The first adaptive 
control algorithm shown to be capable of globally stabilizing any 
process satisfying these assumptions was developed in 1978 [l]. 
In the intervening years, a number of significantly improved algo- 
rithms (e.g., [2]-[5])  have been found for stabilizing processes 
satisfying these assumptions. In addition, recent work [6]-[ 151 
has shown that these assumptions can be relaxed very much fur- 
ther while still achieving stability. Still missing, however, is a 
conceptual framework for systematically describing these results 
and others in a unified way. 

The main objective of this paper is to propose such a frame- 
work. The basic idea (Section 11) is both natural and transparent: 
a parameter adaptive control system is simply the interconnec- 
tion of a process, a “parameterized controller,” and a “tuner.” 
The parameterized controller controls the process and the tuner 
tunes the parameterized controller. “Forced” tuning takes place 
only when a suitably defined “tuning error,” generated by the 
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parameterized controller, is nonzero. Within this framework, the 
concept of weak tunability (Section 111) can be defined, char- 
acterized, and shown to be necessary for adaptive stabilization. 
Our main result (Section IV) is to prove that a slightly stronger 
property called tunability is sufficient for adaptive stabilization, 
provided a tuning algorithm is used which possesses certain typ- 
ical capabilities. 

A .  Preliminaries 
Throughout this paper, Rnxg is the real linear space of n x q 

matrices. For M = [mi,] E R n x q ,  M‘ denotes its transpose and 
IMI = Cy=l E,”=, lmij 1; on occasion, we also use the Euclidean 
norm 1 1 ~ 1 1  = (Cin_lCiQ=llmiJ12)1’2. In general, IlMil I IMI 
and IMI L l/mllMII. 

We shall make use of the following descriptive terminology, 
applicable to functions defined on a (possibly infinite) time inter- 
val 10, t ) .  A piecewise-continuous function g:[O, t )  + R~ is in 
C ’ ,  i being a positive integer, if 

for some constant C. If for each number X > 0 there is a constant 
C ,  such that 

Jo 

then g is bounding. A bounding function is a zeroing function if 

0. We remark that bounding functions inchde functions in C , 
C2, and C”, whereas functions in C’ or C2, defined on [0, m), 
are zeroing functions as are piecewise-continuous functions which 
themselves tend to zero as t + m [ 161. 

Let X: [O, 1) + Rn be continuous; a bounding function g is said 
to be nondestabilizing along x with growth rate A* 2 0 i f  1) 
for each > A* there exists finite numbers CI  and C2 such that 

7 = 03 and for all X E (0, CO), Iiml-” s‘ Is(p)ldCL 

O S T S t S S  ( 3 )  

and 2) X’ is the least nonnegative number with this property.’ If, 
in addition, for each X > A ” ,  (3) holds with C2 = 0, then g is 
nondestabilizing with growth rate X*. Note that C ’ functions 
are nondestabilizing with growth rate 0 since any function satis- 
fying ( 1 )  with i = 0 satisfies (3) for X > 0 with Cl = C and 
C2 = 0. C2 functions are also nondestabilizing with growth rate 
0 since for any X > 0, lg I 5 g2 /4X + X so if g satisfies ( 1) with 
i = 2 ,  then (3) holds with C I  = C/4X and C2 = 0. 

A piecewise-continuous matrix A : [ o ,  t )  + I$’” is expo- 
nentially stable if there exist positive numbers C and X 

’ The inclusion in (3) of the integral involving ix(.)I is prompted by the 
results of [5]. 
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such that the state transition matrix $ A ( t ,  T) of A ( t )  satisfies 
Ic$A(t,.T)I 5 Ce--X(t-7), t ,  7 E [0, i). Note, that if A is ex- 
ponentially stable and g:[O,  t )  7 W” is nondestabilizing along 
x with growth rate A*,  then so: $ ~ ( f ,  T ) g ( T ) d T  is nondesta- 
bilizing along x with growth rate CA* since this integral is 
bounded by Csd e-X(‘-7)lg(T)1 dr ,  which, in turn, is bounded 

A functionR0 + k f x m  on an open set $2 c kPX4 is contin- 
uously differentiable if it possesses a continuous first derivative; 
f is locally Lipschitz if for each compact (i.e., closed, bounded) 
subset 0 C 0, there exists a constant L depend& only on fi 
for which If(x) - f ( y ) I  5 Llx - y l ,  all x ,  JJ E 0. It is known 
[ 171, [ 181 that continuously differentiable functions are locally 
Lipschitz and that locally Lipschitz functions are continuous. 

We shall make use of certain basic facts concerned with the 
nonlinear differential equation 

by c si lg(.)I dr.  

x = a ( x ,  t )  (4) 

where a:R”x[O, i) --+ W” is locally Lipschitz in x and piece- 
wise continuous in t .  It is known [17], [18] that foE each inj- 
tial state xo E R”, there is a maximal interval [0, t )  c [0, t )  
on which a unique continuous solution y ( t )  to (4) satisfying 
y(O)_= xo exists; and if Iy(t)l is bounded on this interval, then 
t = t and the solution necessarily is bounded on [0, t ) .  In some 
applications, (4) is of the special form 

xi = A I ( ~ ) x I  +.fi(xi,x2, t )  

x 2  =A2(t)x2 + f 2 ( X l ,  t )  ( 5 )  

where the A; are exponentially stable, b is bounded, and the 
f i  are nonlinear functions. The following lemma asserts that if 
along a solution y = pi, y;]’ to (5 ) ,  the f; satisfy 

1 If l(Yl(t) ,  Y2(0 ,  t)I 5 U(t)(lYl(t)l + CI IY2(t)l) + h( t )  

lf2(Yl(t), 01 5 CllYl(t)l +c2 

. t  E [0, i) ( 6 )  

where h is bounding, the C; are nonnegative constants, and U is 
nondestabilizing with sufficiently small growth rate, then y itself 
must exhibit bounding limiting behavior. 

Lemma I :  Let C and h be positive constants for which the 
state transition matrix 4 A ,  ofA; satisfies l+A,(t,  7)1 5 Ce-h(t-r) ,  
0 5 7 5 t 5 i, i = 1, 2. If h is bounding and U is nondestabiliz- 
ing along y with growth rate A* and A* + ~ C I  fl < X/C, then 
y ( t )  exists and is bounded on [0, t ) .  If, in addition, I = m and 
U and h are zeroing functions, then as t + m, yl ( t )  approaches 
the unique bounded solution x * ( t )  to the equation 

1’ = A 1 ( t ) x ’ + b ( t )  (7) 

X*(O) = 0. ( 8) 
Although the proof of this lemma can easily be deduced from ex- 
isting literature (e.g., [19], [4], [22]), for completeness, a proof 
is given in the Appendix. 

11. CONCEPTUAL FRAMEWORK 
Classically, [ 11-[3] parameter adaptive control systems have 

been defined and discussed in terms of error models in which pa- 
rameters typically enter linearly. It turns out that for many adap- 
tive algorithms (e.g., [6], [8], [9], [12]-[15], [29]) error models 
play no essential role and parameters enter nonlinearly. Hence, a 
new conceptual framework is needed to describe both the clas- 
sical and more recent adaptive structures. To construct such a 
framework it is useful to think of a parameter adaptive control 
system as a system consisting of three components: a process, 

W 

lk 

- 

Fig. 1.  A parameter adaptive control system 

a parameterized controller, and a tuner, Fig. 1. The process is 
a dynamical system with control input U E R”“ , disturbance in- 
put w E R n W ,  and measured output y E W“’ . The parameterized 
controller is a dynamical system &(k)  depending on a control 
parameter k which takes values in some subset 6 c R“”. The 
inputs to &(k)  are the tuner output k ,  the process output y ,  and 
possibly a reference input r. The outputs generated by & ( k )  are 
the closed-loop control input U to the process, a tuning error 
e r ,  as well as supplementary tuning data d consisting of known 
functions of r, y ,  and the parameterized controller’s state. The 
tuner is an algorithm &(PI ) ,  initialized by PI (i.e., k(0) = P I ) ,  
with inputs d and er and output k ,  k ( t )  being the “tuned value” 
of k at time t; & ( P I )  is presumed to be well defined for each 

The function of & is to adjust k to make eT “small” in some 
suitably defined sense. Although the specifics of &- may vary 
greatly from algorithm to algorithm, in most instances, tuning is 
carried out in one of two fundamentally different ways, depending 
on whether 6 is countable or not. For the countable case (e.g., 
see [7], [12], [29]), tuning is achieved by sequentially stepping k 
through 6 along a predetermined path, using on-line (i.e., real- 
time) data to decide only when to switch k from one value along 
the path to the next. In contrast, for the uncountable case (e.g., 
see [1]-[5], [lo], [ l l ] ,  [20]-[23]) the path in 6 along which k 
is adjusted is not determined off-line but instead is computed in 
real time from “gradient-like’’ data. The main advantage of count- 
able search algorithms over gradient-like procedures appears to 
be their broader applicability. On the other hand, when appli- 
cable, gradient-like algorithms are likely to exhibit far superior 
performance, but so far, this has not been clearly demonstrated. 

is an algorithm driven by e r ,  CT will typ- 
ically possess certain “rest” or “equilibrium” values of k at 
which tuning ceases if eT = 0. To be more precise, let us 
agree to say that (in open loop) a tuner & ( P I )  is at equilib- 
rium value po E 6 at time t o  2 0, if k( t0)  = po and if for the 
input e r ( t )  = 0, t 2 C O ,  k ( t )  remains fixed at po for t 2 to. 
In this paper, we assume that ET is stationary to the extent that 
its possible equilibrium values at to are independent of t o  and 
PI E 6; and we define the tuner’s equilibrium set ET to be the 
set of all such values in 6. 

One fairly general algorithm for a tuner might be a dynamical 
system of the form 

PI E 6. 

Since a tuner 

k = r i ( k )  + r2 (k ,  d,  x N ) e T  

(9) 

X N ( 0 )  = X N o  (10) 

x- where the r;( .) are nonlinear functions, X N  is the state of a “d 
namic normalizer” (cf. Section IV), P I  E 13“’ and X N ~  E W“ . 
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In this case, 6 can be taken as Rnp and C, = { p :  m ( p )  = 0). 
Alternatively, CT might be a switching algorithm of the form 

where h is a function from the positive integers to Rnp,  
P I  E image h ,  t o  = 0, and for i > 0 

min { t : I’ lleT1I2 d~ = ( i ! )  , if this set is nonempty 

or 
t>1,&,  

t ;  = 

otherwise 

[29]; in this case, 6 is the image of h (which is countable), 
and ET = 6. The ideas which follow apply to both types of 
algorithms. Thus, until Section IV, no special assumptions will 
be made about &, other than that it be stationary and possess a 
nonempty equilibrium set. 

In the sequel, we assume that the process can be modeled by 
a stationary finite-dimensional linear system C p  with state xp. 
We take C p  to be a member of some family of systems 311 
continuously parameterized by an uncertainty vector q which 
takes values in some open subset Q C W”” The models in 9?l 
are of the form 

X p  = A,(q)x, + B p ( Q b  + B,(q)w 

Y = C,(q)x, + DP (4)w (12) 

where A p ,  B p ,  . . . , Dp are continuous matrix valued functions 
on Q. For simplicity, we choose our parameterization so that 
0 E Q and view (12) evaluated at q = 0 as a nominal pro- 
cess model C N ;  sometimes EN’S transfer matrix from U toy is 
known exactly, but we shall not make use of this fact here. The 
vector q p  E Q, for which (12) models Cp is sometimes called 
the “mismatch error” (cf. [4]) and as such is a characterization of 
Cp ’ s  “structured uncertainty. ” More generally, q p  might consist 
of two subvectors, one a mismatch error, the other a vector of 
numbers pl , p2 . . . weighting Cp’s “unmodeled dynamics” (cf. 
[4]). In what follows it is not necessary to be too specific about 
the definition of q or about the way Ap, . . . , Dp depend on q, 
except for the assumption, which has already been made, that 
this dependence is continuous. 

The parameterized controller &(k) will be taken to be a sta- 
tionary dynamical system of the form 

XC = Ac(k)xc  + B y ( k ) y  + B,(k)r 

U = F c ( k ) x c  + F y ( k ) y  + G,(k)r 

eT + Cc(k)xc  + C y  (W + Dr(k)r 

d = E c ( k ) x c  + Ey(k)y  + E,(k)r (13) 

where Ac( . ) ,  . . . ,E , ( . )  are matrix-valued functions on some pa- 
rameter space 6 c R”” . 

The preceding framework is general enough to encompass al- 
most all of the existing continuous-time parameter adaptive con- 
trol algorithms proposed in the literature for stationary linear 
process models. For example, the classical adaptive control sys- 
tems studied in [2], [3] admit this characterization; in these cases, 
er is the (unnormalized) augmented error originally introduced 
by Monopoli [30] and C, = R“’. Systems using “high-gain’’ 
adaptive stabilizers such as those in [7], [9], [13]-[15] can also 
be described in this way; in these cases, k is a scalar, ET = R, 
and er might bey ,  b’, U ’ ] ’ ,  or b’, x&]’. Similarly, the switch- 
ing algorithms of [7], [12], [29] are covered by this framework, 

as has already been noted. It is also possible to use this frame- 
work to describe a large variety of robustly stabilized adaptive 
systems such as those studied in [4], [ 5 ] ;  for example, for a sys- 
tem utilizing the algorithm of [4], er would be an (unnormalized) 
augmented error and ET would be a compact subset of 6. Most 
“indirect” adaptive control algorithms (see [22]) also admit this 
characterization- in these cases, eT is typically an unnormalized 
identification error, and ET = 6 = Elnp. In fact, just about the 
only continuous-time algorithm we know of which does not quite 
fit this framework, is the one studied in [ l ] .  This is because the 
parameterized controller Cc(k) of [ l ]  includes in its defining 
equation for U a term of the form N ( k ,  d)eT, N being a non- 
linear function of k and d. Notwithstanding this difference the 
concepts and results of Section 111 apply to this adaptive system 
as well. 

111. TUNABILITY 
The closed-loop parameterized system C ( p )  determined by 

(12) and (13) can be concisely described by a system of equations 
of the form 

eT = C(P)X + D ( P ) u  

d = E ( p ) x  + G(p)u ( 14) 

where x = [xb, x;]’ and U = [r’, w’]’. Here A , . . . , G  are 
defined in the obvious way using ( 12) and ( 13).2 In this setting, 
the following question arises. What must be true of C ( p )  in order 
for there to exist a tuning algorithm CT [e.g., (9), ( lo)]  for which 
the closed-loop adaptive system consisting of CT and C ( k )  is 
“stable”? In the sequel, we provide some preliminary answers 
to this question. 

With E any fixed, nonempty subset of C(p) ’ s  parameter space 
6, let us agree to call (14) weakly tunable on E ,  if for each 
fixed p E & and each bounded, piecewise-continuous exogenous 
input v:[o,  CO) + RP , every possible system trajectory for which 
eT(t) = 0, t E [0, x), is bounded on [0, a). Call C ( p )  tunable 
on & if for each p E &, x goes to zero as t + M whenever both 
e T  and v equal zero on [0, M). 

Remark I :  It is easy to verify that C ( p )  is weakly tunable 
on E ,  just in case, for each p E E ,  the matrix pair ( C ( p ) ,  A @ ) )  
is weakly detectable3 and the matrix pair obtained by restricting 
C ( p )  and A ( p )  to the controllable space of ( A ( p ) ,  B ( p ) )  is de- 
tectable. Similarly, ( C ( p ) ,  A @ ) )  is tunable on & if and only if, 
C ( ( p ) ,  A@)) is detectable for each p E E.  Thus, tunability of 
C ( p )  on E implies weak tunability of C ( p )  on E and is equivalent 
to weak tunability of C ( p )  on E whenever C ( p )  is controllable 
on E .  

Our aim here is to briefly explain why weak tunability is nec- 
essary for adaptive stabilization. To be specific, call ET( .) an un- 
biased stabilizer of C ( k )  if for each initialization P I  E 6, each 
bounded piecewise-continuous exogenous input v: [0, 00) --f Rnu 
and each initial state x(O), the state response x of C(k),  tuned 
by & ( P I ) ,  is bounded on [0, m). 

Suppose C, is a candidate tuner for C ( p ) .  The definition of 
weak tunability implies that if C ( p )  is not weakly tunable on 
ET’S equilibrium set ET,  then for some exogenous input v, initial 
state ~ ( o ) ,  and parameter value po E E T ,  the untuned system 
C(p0)  will admit an unbounded state response x(t )  along which 
eT(t) = 0. If the same input v is applied to C ( k ) ,  with k tuned by 
&(pa), then clearly, k ( t )  = p ~ ,  t 2 0 and eT(t)  = 0, t 2 0. 

* For clarity, we have not explicitly denoted the continuous dependence of 
these matrices on the process model uncertainty vector q. 

A matrix pair (C, A )  is weakly detectable if for each vector x for which 
Ce”‘x is bounded on [0, m), it follows that e A r x  is bounded on [0, m), 
as well. (C, A )  is detectable if for each eigenvalue-eigenvector pair (A,  x ) ,  
X has a negative real part whenever C x  = 0. Detectability implies weak 
detectability but the converse is not necessarily true. 
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Therefore, C ( k )  will have exactly the same unbounded response 
to v that C(p0)  has. We are led to the following theorem. 

Theorem 1: A necessary condition for tuner ET(.) to be an 
unbiased stabilizer of the tuned system C ( k ) ,  is that C ( p )  be 
weakly tunable on the tuner’s equilibrium set E T .  

Clearly, weak tunability on ET is a fundamental property that 
any parameter adaptive control system of the aforementioned gen- 
eral type must have if stability is to be a ~ s u r e d . ~  An interest- 
ing problem then, is to determine what is required of a process 
model C, and its parameterized controller & ( p )  for the result- 
ing closed-loop system C ( p )  to be weakly tunable or tunable 
on some given subset & c 6 .  This problem is discussed further 
in [28]. In the sequel, we give some examples of tunable and 
untunable systems. 

Example I: Suppose for Cp , we take the one-dimensional sys- 
tem 

j = a y + g u  (15) 

with a and g unknown constants satisfying a > 0 and g # 0. To 
stabilize this system, consider using a control law of the form 

The parameterized controller C c ( p )  corresponding to (16), (19),  
and (20) is thus 

j + Y = Y  

U +ii = p 3 y  

e r  = (P2 + 1)Y +PIU - Y 

7.4 = P3Y (21) 

and C ( p )  is the closed-loop parameterized system, described by 
(15) and ( 2 1 ) .  

Observe that the point [0, a,  01’ E E T .  It is easy to verify that 
for this value of p ,  C ( p )  admits the unbounded solution y = ear ,  
7 = ea‘ / (  1 + a ) ,  U = 0, e r  = 0 so C ( p )  is not weakly tunable 
on ET.  

Example 2: In Example 1, C ( p )  is untunable on & because 
G7. contains points [g, U ,  f ] ’  for which U +gf > 0. It is possible 
to eliminate this problem and to achieve stability, if sign(g) is 
assumed known, by using in place of ( 1 8 ) ,  the adjustment law 

where,- if we had our preference, we would choose f so that 
a + g f = -1 since this would stabilize (15); but since a and 
g are unknown, we might instead try to choose f in accordance 
with the certainty-equivalence principle so that 

U +gf = -1 (17) 

where U and g are estimates of a and g, respectively. How- 
ever, since standard identification algorithms may cause g to pass 
through zero, to avoid the possibility of “division by zero” let 
us consider in place of (17), the “gradient” adjustment law 

as a means of generating f. Finally, to construct estimates U and 
g,  observe from (15) that 

y = ( a  + l)J +gU + E  

where E = e-‘(y(O) - ( a  + 1)J(O) - gU(O)), and 

y + y = y  

i i + i i = u .  (19) 

Thus, to generate g and U ,  it makes sense to use an algorithm 
driven by the “identification error” 

e = ( U  + l)y + g n  - y ,  (20) 

since this results in the familiar error equation 

e = J(U - a )  + i i (g  - g) - E .  

If a standard identification algorithm is used, identification ceases 
when e = 0, in which case, a and g become constant. Viewing 
this algorithm together with (18) as a tuner CT with tuning input 
eT = e ,  and tuned parameter [g, U ,  f]’, G’s equilibrium set 
will be 

together with tuning equations 

ci: = - (U +gf + 1) -ye7 

g = - ] ( U  +gf + 1) - iieT 

where eT is the identification error e defined by (20).5 
In thisA case, CT’s equilibrium set is precisely those points 
[g, U ,  f ] ’  E R3 for which (17) holds. It is straightforward to 
check that at any point [PI, p2, p31’ E E T ,  

Y ( t )  = P I  - P3r(O))e-‘ 

along any solution [ y ( t ) ,  j ( t ) ,  u(t)]’ to (15) and (21) for which 
e T ( t )  F 0. Since this and (21) imply that any such solution is 
bounded, C ( p )  is now tunable on &. 

Example 3: Take 6 = R and let C ( p )  be any parameter- 

ized system with C ( p )  = [ l ,  01 and A ( p )  = [: :] . Since 

C ( p ) ,  A ( p ) )  is detectable on 6 ,  by Remark 1, C ( p )  must be 
tunable on each subset E c 6. In spite of this, observe that no 
matter how k is tuned, C ( k )  can have an unbounded state re- 
sponse (e.g., with U = 0 and x(0 )  = [ I ,  o]’, x ( t )  = e ‘ [ l ,  o]’), 
so adaptive stabilization is impossible. 

The preceding example shows that tunability of C ( p )  on a 
known subset E C W”” is not sufficient to ensure that there is a 
tuner CT which will adaptively stabilize C(k) .  However, using 
the ideas of [7], it can be shown that if C ( p )  is tunable on E and in 
addition, & contains a countable dense subset E* as well as a pa- 
rameter value p~ for which C(p0) is internally stable, then with- 
out knowing P O ,  it is possible to construct a switching algorithm 
& depending on E* with & c 6 c &*, which is an unbiased 
stabilizer of C(k) .  Thus, to achieve adaptive stability with some 
tuner C T ,  it is enough to design C, (p )  so that ( C ( p ) , A ( p ) )  
is detectable on a known subset E C W”” containing a countable 
dense subset E” and a point po which stabilizes A(p0) .  The fol- 
lowing example shows that this is very easy to do without assum- 
ing very much about X p .  

Example 4: For fixed integer n > 0, define parameter vec- 
tor p = [P 1 ,  p2, . . , p ~ ~ + ~ ] ‘ ,  and parameterized polynomials 

P 2 n S ” - I  + . . . P n + 2 S  -t p n + l .  Choose y(s) to be any monic sta- 
p ( p ,  S )  = S“ + Pns”+l + ’ ’ ‘ ~ 2 s  + P I  9 a ( p ,  S )  = ~ 2 n + l ~ ”  + 

Motivation for these equations, which can be found in [25],  stems from 
the observation that “control error” ec = (U + gl + I )  and tunins emor er 
can be written, respectively, as e ,  = (U - a )  + f(g - g )  + g(f - f) and 
er = ?(U - a )  + U(g - g )  - E ,  where f = -( 1 + a) /g .  

For algorithms utilizing persistently exciting probing signals, weak tun- 
ability on &T may well be more than is required for stability. This issue will 
be discussed further in another paper. 
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I I 

Fig. 2.  A parameterized system C ( p ) .  

ble polynomial of degree n and let CI(P) =   AI(^), bl (p) ,  

n-dimensional realizations of a@, s)ly(p,  s) and y(s)lP@, s), 
respectively. Define CC ( p )  to be the cascade interconnection of 
C2 with CI as shown in Fig. 2. 

Observe that if for fixed p ,  er is identically zero, then both U 
and y must go to zero since CI ( p )  is stable and & ( p )  has a stable 
proper inverse. From this, it follows that if C p  is a stabilizable 
and detectable process model, then for all p E Rzn+l, C ( p )  must 
be detectable through eT.6 Let E* be a countable, dense subset 
of RZn+l; clearly C ( p )  is tunable on E * .  Moreover, if in the 
linear space w ~ ~ ~ "  @R""+' , E, is sufficiently close 
to a system which is stabilizable, detectable, and of McMillan 
degree not exceeding n, then there must exist a vector po E E* 
for which A(p0)  is stable. Thus, E* and E@) will have what is 
required for adaptive stabilization as long as E, is stabilizable, 
detectable, and close enough to a stabilizable, detectable system 
with McMillan degree no greater than n. 

IV. TUNING THEOREM 

C l ( P ) ,  d l ( P ) )  and C2(P)  = (Az(p), bz(p) ,  C 2 ( P ) >  dZ(P)) be 

In this section, we study the behavior of the parameterized 
system C ( k )  described by 

X = A(k)x  + B(k)u 

er = C(k)x  + D(k)u 

d = E(k)x  + G(k)u (22) 
for the case when k is continuously tuned. As before, C ( k )  is 
taken to be a representation of the closed-loop interconnection of 
process model Cp and parameterized controller Cc(k) .  We as- 
sume that 6 is an open-connected subset of W"" , that all param- 
eterized controller matrices in (13) are at least locally Lipschitz 
on 6, and that AC , B y ,  F c  , F ,  , Cc , and Cy are continuously 
differentiable. These assumptions imply that B : 6  + Rnx"" ,  
D : 6  + W"' ' " U ,  E :@ ~ R " d  x n  and G : 6  + RndxnL are locally 
Lipschitz and that C 6  + R"' '" and A : 6  + RnX" are contin- 
uously differentiable. The previously assumed continuous depen- 
dence on q E Q of all process model matrices in (12) further 
implies that A ,  . . . , G depend continuously on q as do the deriva- 
tives with respect to p of C ( p )  and A@). 

As a tuner for k ,  we shall consider an algorithm CT consisting 
of a parameter adjustment law: 

k nT(k) + MWeT, (23) 

er = er - W'NWeT, (24) 

W = W ( k ,  d ,  X N ) ,  (25) 

a normalized tuning error 

a weighting matrix 

It is interesting to note that this will no longer be true if C, and CZ are 
interchanged, unless Cp is restricted to be minimum phase. 

and a dynamic normalizer 

(26) X N  = A N X N  + b ~ ( k ,  d ) .  

We assume that b N : 6  x W"" + RnN and W 6  x R"" x RnN + 

WmX"'  are locally Lipschitz, that IIr: 6 + 6 is continuously 
differentiable and that M ,  N ,  and AN are constant matrices with 
AN exponentially stable and N = N' positive semidefinite. We 
further assume that for each compact subset 6 c 6 there are 
constants CW; and C N ,  for which both W and b~ satisfy the 
linear growth conditions 

I IW(p, d ,  X N ) I  I Cwi( ld l+  / x N I )  +Cw2 

I ~ N ( P ,  4 I CNI Id1 + CNZ 

. p  E S, d E W"", X N  E R"". (27) 
Remark: With some additional effort, it can be shown that 

the results which follow also apply if, instead of (27), Wand b~ 
satisfy the growth conditions IWI 5 Cwl(ldl + 1 ~ ~ 1 ' ' ~ )  + Cw2 
and l b N l  5 C N I  ld12 + c N 2 ,  respectively. 

is 
defined by equations of the form CT = er - C z ,  z = A Z  + 
BW'NWCT where ( C ,  A ,  B )  is a square controllable observable 
linear system with positive real transfer matrix. It is not difficult 
to generalize the results which follow to encompass this alterna- 
tive case. 

Tuner equations as general as (23)-(26) describe a large num- 
ber of algorithms including, with slight modification, all of those 
surveyed in [31] and [22] which continuously tune k. For a 
SISO process with d = [x ; ,  y ,  r] ' ,  eT an unnormalized aug- 
mented error, W = d ,   IT = 0, and N = M = Z n , x n , ,  
the preceding equations model one of the two algorithms ex- 
amined in [2]; in this case, (26) is absent and the normalization 
of er via (24) is "nondynamic." This example can be modi- 
fied to illustrate "dynamic" normalization- simply redefine N ,  
M ,  and W SO that M = [ I n d x n d ,  01, N = Z n d + l x n d + l ,  and 
W = [d', XN]', and include the one-dimensional dynamic nor- 
malizer XN = ANXN + IuI + (y l .  The role of dynamic normal- 
ization has been discussed in [32]. 

The assumption that IIT is continuously differentiable, which 
is made for simplicity, is mildly restrictive, and precludes di- 
rect application of the theorem which follows to the analysis of 
algorithms such as the "switching a-modified" tuner of [31], 
since that algorithm uses a function IIT which is continuous and 
piecewise-linear, but not everywhere differentiable. In cases of 
this type, the difficulty can easily be avoided if one is willing 
to replace IIr with a continuously differential approximation IIr 
which is sufficiently close to n~ to preserve its essential features. 
Alternatively, using ideas similar to those exploited in [20, Proof 
of Lemma 31, it should be possible to prove the tuning theorem 
which follows, assuming only that IIr is locally Lipschitz. 

Note that Example 2 utilizes a tuning algorithm which can be 
described by (23)-(26) with contjnuously differentiable &. In 
this case, IIr([g, U ,  f]') = e c [ - f ,  -1, sign(g)]', where ec = 
( U  + g f + 1). The tuning theorem which follows suggests that 
the idea of "implicit tuning" illustrated by Example 2, can be 
generalized considerably. This will be discussed in a future paper. 

In the sequel, we study the closed-loop adaptive control system 
described by (22)-(26)for all values of uncertainty vector q in 
some compact subset Q c Q with dense interiors containing the 
zero vector. In view of Theorem 1 and Remark 1, we make the 
following assumption. 

Tunability Assumption: For each q E Q, C ( p )  is tunable on 
the equilibrium set ET = { p :  & ( p )  = 0, p E S}. 

For finite nonnegative number 6, let V6 denote the class of 
all piecewise-continuous exogenous inputs v: 10, m) - for 
which l u ( t ) l  5 6, t 2 0. The preceding assumptions are suf- 
ficient to ensure that for each U E Vg and each initial state 
(x(O), x ~ ( 0 ) ,  k(0)) in spme bounded subset X c R" x R"" x 6 
there is an interval [0, t )  of maximal length on which a unique 

Remark: In some tuning algorithms (e.g., see [2]), 
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solution (x(r) ,  x ~ ( t ) ,  k ( t ) )  to (22)-(26)_ exists. Our objective is 
to show, under certain conditions, that t = 03 and that such so- 
lutions are bounded on [0, w). Quite often, the type of proof 
used to reach such conclusions involves two steps. The first often 
consists of using Lyapunov-like functions to establish the follow- 
ing properties. 

Tuner Properties: 
i) There exists a positive number C*,  depending only on X, 

6 ,  and Q such that for each initial state in X, each exogenous 
input U E Vs and each uncertainty vector q E Q, the functions 
Ikland / & ! T I  are bounded by C* along the solution to (22)-(26). 

11) There exists a continuous nonnegative function h* : Q + R, 
depending only on X and 6 ,  with the property that for each initial 
state in X,  _each exogenous input U E Vh and each uncertainty 
vector q E Q,, the functions Ik I and (WPT I are nondestabilizing 
along ( x ,  X N )  with growth rates not exceeding X*(q). 

iii) h*(O) = 0. 
The preceding properties are, in fact, easily established for 

many tuning algorithms discussed in the literature. They are, 
for example, characteristic of all algorithms discussed in [2]-[5], 
[lo], [ l l ] ,  [20], [22], [31]. Note that properties ii) and iii) imply 
that the growth rates of I&- I and ~WCT I will be smaller than any 
prescribed number E > 0, if the process model C p  to which the 
algorithm is being applied is sufficiently close to the nominal CO 
(i.e., 1qpl is sufficiently small). On the other hand, with some 
algorithms, small growth rates may result, even when C p  is "very 
far" from Co. For example, this is so with the classical algorithm 
of [2], where q p  is presumed to be a mismatch error, since in 
this case h*(q)  = 0 for all q E Q. 

As already mentioned, the first step in the analysis of (22)-(26) 
is to show that a system's tuner has the properties we have just 
enumerated. While considerable ingenuity is typically required to 
develop such algorithms, to verify that they possess these prop- 
erties is usually straightforward. This is in sharp contrast to what 
is encountered in Step 2 where intricate and difficult arguments 
are often needed to prove that (x, XN) is bounded. In the se- 
quel, it will be shown that substantial simplification in Step 2 
can be achieved by using the concept of an output injection [23]. 
To briefly illustrate the idea, suppose we want to prove for a 
particular initial condition that the state of a detectable system 
y = CX, X = AX is bounded (or goes to zero) given only that 
y is bounding (or zeroing). To do this, we use the fact that there 
is an (output injection) matrix H which exponentially stabilizes 
A + H C .  This is a consequence of detectability. H need not be 
computed; it only has to exist. Now write X = ( A  +HC)x -Hy . 
Since A+HC is exponentially stable and y is bounding, we have, 
immediately, that x is bounded and if y is zeroing, then x goes 
to zero. 

Our idea is to exploit the preceding in the more general context 
of a parameter adaptive control system. Since we will be dealing 
with matrix pairs ( C ( p ) ,  A @ ) )  which depend on p E 6 ,  we 
need some preliminary results. 

Proposition I :  Let Q be an open subset of Rnq ; let E and 6 be 
open subsets of R"" with E c 6; let (C, A ) :  6 + Rmx" x RnX" 
be a continuously differentiable matrix pair depending continu- 
ously on q E Q. 

If ( C ( p ) ,  A ( p ) )  is detectable for each p E E and each q E Q,, 
then the following hold. 

i) The class e(C, A ,  E )  of continuously differentiable matri- 
ces H E  + w n X m  , depending continuously on q E Q for which 
A ( p )  + H ( p ) C ( p )  is exponentially stable for each p E E and 
each q E Q,, is nonempty. 

ii) For each matrix H E e(C, A ,  E), there exists a unique 
symmetric, positive-definite, continuously differentiable matrix 
R:E + Rnx" , depending continuously on q E Q,, which satisfies 
the Lyapunov equation 

R(P)(A(P)  + H(P)C(P) )  + ( A ( P )  + H(p)C(p) ) 'R(p )  + I = 0 

for each p E 6 and each q E Q. 

iii) For each matcix H E e(C, A ,  E )  and each pair of com- 
pact subsets E and Q of E and Q, respectively, thgre exists pos- 
itive constants C and X depending only on H ,  E and Q with 
the p'pperty that, for each-continuously differentiable function 
l : [ O ,  t )  + & and each q E Q, the state transition matrix +(t, T )  

of A(l ( t ) )  + H ( l ( t ) ) C ( l ( t ) )  - i R - '  ( l ( t ) ) R ( l ( t ) )  satisfies 

~ < ~ < t < i .  (28) A ( [ - r )  I6(t, 711 5 Ce- 

The last statement of this proposition is a slight generalization 
of [22, Lemma 6.21 (see also [20, Lemma 31). The proposition's 
proof depends on the following lemma, which has been proved 
previously in [21]. 

Lemma 2: Let R be an open subset of all detectable matrix 
pairs (C, A )  E RImx" @ Elnxn and let S" denote the linear space 
of all n x n  symmetric matrices. There exists a unique analytic 
function R : R  + S n  whose value R = R ( C , A )  at ( C , A )  is 
positive definite, exponentially stabilizes the matrix A - RC'C, 
and satisfies the matrix Riccati equation 

A R  +RA' - RC'CR + I  = 0. 

We now state our main result. 
Tuning Theorem: Let (22)-(26) describe an adaptive control 

system consisting of a parameterized subsystem C ( p )  and a tuner 
ET. Suppose that for some compact subset Q c Q with dense 
interior containing the zero vector, C ( p )  satisfies the Tunability 
Assumption. Suppose, in addition, for some finite number 6 > 0 
and some bounded subset X of the state space of (22)-(26), that 
CT has Tuner Properties i) to iii)L Then the following are true. 

1) There exists a subset Q* c Q with dense interior containing 
the zero vector, such that for each uncertainty vector q E Q* , each 
initial state in X and each exogenous input U E Vh, the solution 
( x ( t ) ,  x ~ ( t ) ,  k( t ) )  to (22)-(26) exists and is bounded on [0,03). 

2) Suppose, in addition, that along a solution, WET has a 
bounded derivative and as t + CO, eT and k approach limits 0 and 
k * ,  respectively. Then k* E &; moreover for each output injec- 
tion matrix H *  E e(C, A ,  ET) ,  x approaches the unique bounded 
solution x *  the equation 

X* = A(k* )x*  + B(k*)u + H*(k*)e*  

e* = C(k*)x* +D(k*)u 

X * ( O )  = 0, 

and e* approaches zero. 
The Tuning Theorem's first statement implies that adaptive 

controllers satisfying the theorem's hypotheses are capable of 
stabilizing all process models E,, E 3?l in some neighborhood of 
the nominal CO. The additional hypotheses made in the theorem's 
second statement are often satisfied when the process model has 
no unmodeled dynamics and there are no external disturbances 
acting on the process (i.e., when v is just a reference input). 

The point of the Tuning Theorem is, of course, that it is al- 
gorithm independent. The theorem owes no allegiance to any 
particular parameterization or design philosophy (e.g., direct or 
indirect control) leading to C(k) nor to any one tuning algorithm 
C, . All that is required is that C(k) be tunable on & and that C, 
possess Tuner Properties i)-iii). Tunability is just a bit stronger 
than weak tunability which, in turn, is necessary for stability and, 
as mentioned before, many tuners have the aforementioned prop- 
erties. What this line of reasoning does then, is to bring into sharp 
focus those key features common to a large number of seemingly 
different adaptive control algorithms which are needed to verify 
their ability to stabilize. 

Let c T :  6 + U"' '" denote the matrix-valued function whose 
value at p is the block diagonal matrix consisting of n diagonal 
blocks each equal to n ~ ( p ) .  Note that CT is continuously differ- 
entiable since &- is. The following lemma is particularly useful. 
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Tunability Lemma: The matrix pair (C(p), A(p)) is de- 
tectable on & = (p: n ~ ( p )  = 0, p E 6) iff the matrix pair 

is detectable on 6. 
Proof: if 

is detectable on 6, ...en it is detectable on ET since ET C 6; "Jt 
C T ( ~ )  = 0 for p E ET so (C(p ) ,  A @ ) )  is detectable on Er. 

Now assume (C(p ) ,  A @ ) )  is detectable on ET. Fix p E 6 
and suppose that (A,  x) is an eigenvalue-eigenvector pair of 
A(p )  for which C(p)x = 0 and C ~ ( p ) x  = 0. To complete 
the lemma's proof, it is enough to show that real part h < 0. 

Since x is an eigenvector, it cannot be zero. This, the definition 
of Cr(p), and the hypothesis CT(P)X = 0 imply that &- (p )  = 
0 and thus, that p E ET. Since, by assumption, (C(p) ,  A(p))  is 

0 
Construction of v: We now explain how to construct a sub- 

set &* of process model uncertainty vectors q E Q for which the 
stability of (22)-(26) can be assured. We take as given, a bounded 
subset 'X of initial states of (22)-(26), a positive number 6 b_ound- 
ing admissible exogenous input v, and a compact subset Q c Q 
with dense interior containing the zero vector. We presume that 
the tuner C, (23)-(26) has Tuner Properties i)-iii) and that the 
Tunability Assumption holds. Q* is constructed in five steps, 
Step I :  With C* as given by Tuner Property i), define 6 = 

{p: Ip! C*,  p E .6}. The preceding lemma together with the 
Tunability Assumption and Remark 1 imply that 

detectable on ET, it follows that real part A < 0. 

is detectable on 6. Since 6 is open, by i) of Proposition 1 ,  

is nonempty. Pick 

and let R be the corresponding solution to the Lyapunov equation 

R ( A  + HC + H T C T )  + (A + HC + HTCT)'R + I = 0 

as in ii) of Proposition 1. 
Step 2: Let R denote the class of functions w:[O,  tu)-*, with 

piecewise-continuous first derivatives and with t, specifying w ' s  
interval of definition. For each w E R, and each q E Q define 

1 
U,(t) = -R- ' (w( t ) )k (w( t ) )  2 (29) 

From the definition of U, and the properties of R given in ii) of 
Proposition 1 ,  it follows that there is a nonnegative constant C u ,  

depending only on 6 and C* such that 

1Udt)l I CUlG(t)l, 4 E (% w E 0, t E 10, to). (31) 

By iii) of Proposition 1, there are positive constants CI  and 
XI, depending only on Q and C*, H, and H T ,  such that for 
each w E 0, the state transition matrix & ( t ,  7) of A, satisfies 

7)1 5 Cle-hl(r-T) , 0 - < 7 5 t 5 t,. By hypothesis, AN is 
exponentially stable so there also exist positive constants C N  
and XN such that AN'S state transition matrix 4N(t, 7) sat- 
isfies I@N(t, 7)1 F CNe-hN('--r) , 0 < 7 I t 5 t,. Define C = 
max {CI, C N }  and X = min {XI,  AN^; then 

0 5 7 5 t <_ t,. (32) 
Step 3: Define 

CS = (1 + IMl)nCH, (33) 

where CH,  is the supremum over Q x @ of JHT I. Note that the 
definition of Cr , which appears just above the Tunability Lemma, 
implies that 

IHT(P)CT(P)) 5 nCHr In(p)l, E & P E (34) 

Step 4: Define F : 6 x Rn x RnN x Rnu -+ R n x m  and 
F ~ : @ x R ~ x R ~ ' + R ' ~  s o t h a t f o r p ~ @ , x ~ R ~ , ~ ~ ~  , 
RnN,  and U E Rnu 

F l ( p ,  x, XN, U )  = -ff(p)W'(p, a, XN)N 
F2(p,  X, U )  = ~ N ( P ,  a) (35) 

where 

&P, x, U )  = RP)X +G(P)U. (36) 

In yiew of the linear growth assumpfions (27) and the definition 
of d in (36) it follows that for p E 6 and q E &: 

IFi(P, X,  X N ,  U)[ 5 CH(CWI(CEIXI 

+ C G I U I +  IXNI)+CWZ)INI 

IF2(P, x, u)l 5 CNI(CEIXI + C G  Iu I) + C N 2  

where fo: i = 112, Cwi and C N ~  are growth constants depe_nding 
only on Q and 6 ,  and CH , CE , CG are the suprema over Q x 6 
of IHI, /El,  and IG I, respectively. Define CI = CNICE + 1 and 
CF E CHCW~(CE + 1)INI. It follows that for all X ,  XN, U, 
q E Q, and p E 6 

IF 1 I I CF ( Ix I + c I IXN I) + CFCG Iu I + CHC WZ IN1 
(37) 

IF21  I c l lx l  + C N l C G I U I  + c N 2 *  

Step 5: With X * ( q )  as given by Tuner Property ii), define 

Q* = {q : (Cu + Cs + CF)X*(q) 

The continuity of X* on Q [Tuner Property ii)], the presumption 
that X*(O) = 0 [Tuner Property iii)], and the hypothesis that Q has 
a dense interior containing the zero vector, together imply that 
Q* is nonempty, also with a dense interior containing the zero 
vector. 
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Remark 2: As constructed, Q* depends on 6, C*, 3,  H T ,  
and H; 6 ,  in turn, is a function of Q and C*. Therefore, Q* 
ultimately depends on just Q, C * ,  H T ,  and H .  It would be use- 
ful to _express this dependence in more explicit terms since, for 
fixed Q, H T ,  and N, this would in effect give bounds on allow- 
able process model uncertainty in terms of C* . For most tuning 
algorithms, C* is determined by ‘X and in some cases, by both 
‘X and 6 .  It should, therefore, be possible to compute bounds 
on process model uncertainty, in terms of ‘X and 6. It would be 
interesting to see how these bounds depend on the choice of 

1009 

Proof of Tuning Theorem: It will first be shown that As- 
sertion 1 of the theorem is true. For this, fix q* E Q*, U E “6, 
initial state (x(O), x ~ ( 0 ) ,  k(0)) E ‘X and let ( x ( t ) ,  x ~ ( t ) ,  k ( t ) )  
be the resulting solution of (22)-(26) with maximal interval _of 
existence [0, t ) .  From Tuner Property i) and the definitions of 6, 
it follows that k ( t )  E CP for t E [o, i). 

With U, 2, F I ,  and F2 given by (29), (30), ( 3 3 ,  and (36) 
define A I ,  42, f 1 ,  f 2 ,  and b a l o y  solution ( x ,  x N  , k )  so that 
for t E [0, t ) ,  y E Wn and y~ E W 

h ( Y ,  1) = F z ( k ,  y ,  U )  

b = ( B  + HD)u - H e r .  (39) 

Using these definitions together with (22) and (24), it is possible 
to write the differential equations for x and X N  in (22) and (26), 
respectively, as 

f = A l ( t ) X  + f  1(x, X N ,  t )  + b( t )  

f N  = AZ( t )XN + f 2 ( x ,  t ) .  (40) 

Next, observe that the definitions of f l  and f2  in (39) together 
with inequalities (3 l), (34), and (37) imply that 

Ifl(Y9 Y N ,  t ) (  5 (CC/(kl + nCH, ( n ( k ) ( ) ( y (  

+(CF(IYI + C I  ~ Y N I )  +C,)IW&/ (41) 

@ =(Cv + c s  +CF) sup{Ik(, J w e T I }  

h = ~WPTIC,. (44) 
Tuner Property i) together with the definition of b in (39), 

imply that b is bounded. In addition, Tuner Properties i) and ii) 
ensure that h is bounding and that U is nondestabilizing along 
( x ,  X N )  with growth rate X * *  5 ( C ,  + Cs + Cu)X*(q*). But 
q* E Q*. In view of the definition of Q* in (38), it must be true 

that A * *  + 2C1 e < X/C. Therefore, by applying Lemma 1 
to (40) with t = t ,  we conclude that ( x ( t ) ,  x N ( t ) )  is bounded on 
[0, t ) .  Thus, ( x ( t ) ,  x N ( t ) ,  k ( t ) )  is bounded wherever it exists, 
so this solution must exist and be bounded on [0, m). 

Now, suppose that the hypotheses of the theorem’s second 
statement are satisfied. Then the integral som k dt converges and 
from (23), is bounded. These properties imply that k + 0. 
Since by assumption CT + 0, it follows from (23) that n ( k )  ---t 0 
as k 4 k* or that k* E G T .  

The preceding and (44) imply that h and U are zeroing func- 
tions. Therefore, by Lemma 1, x + X where 

k = A l ( t ) x  +b.  (45) 

Let x* and H *  be as in the tuning theorem’s second statement 
and define z = x - x * .  From (30), (39), and (43) it follows that: 

2 = ( A ( k * )  + H*(k*)C(k’))z  + r (46) 

where 

{ = ( A ( k )  - A(k*))x  f HT(k)CT(k)X - ukx 

+ H * ( k * ) ( C ( k )  - C(k*))Z + ( H ( k )  - H*(k*))CR 

+ (B(k)  - B(k*))LJ - H(k)PT + (H(k)D(k)  

- H*(k*)D(k*))U.  

Since v and X are bounded, k + k* and k and et go to 0, 
it follows that c ~ ( k )  + c ~ ( k * )  = 0, that uk + 0 because 
of (31), and thus, that [ + 0. But A ( k * )  + H * ( k * ) C ( k * )  is 
exponentially stable, so from (46), z -+ 0. Therefore, x -+ X *  as 
claimed. This together with (22), (24), and the definition of e* 

0 

V. CONCLUSIONS 
The purpose of this paper has been to illustrate some of the 

advantages of thinking of a parameter adaptive control system as a 
system consisting of a process, a parameterized controller, and a 
tuner, interconnected in a particular way. The proposed structure 
has the virtue of being general enough to describe many different 
kinds of adaptive systems including those of the model reference, 
self-tuning , and high-gain feedback types. While error models 
are not used in this setting, special emphasis is placed on the 
importance of a tuning error. This leads, naturally, to the concept 
of weak tunability which proves to be a fundamental property any 
parameter adaptive control system of the aforementioned type 
must have if stability is to be assured. 

The tuning theorem of Section IV is applicable to a large class 
of adaptive control systems. By modifying the theorem’s hypothe- 
ses, it should be possible to obtain new theorems appropriate to 
other classes of adaptive systems. For one such class, this has 
already been done. It has been shown in [15] that if the param- 
eterized system C ( p )  = (C(p ) ,  A ( p ) ) :  i) depends rationally and 
continuously on a scalar parameter p E 6 = R; ii) is tunable on 
6’, and iii) is “uniformly highrgain stabilized,” then the state 
( x ,  k )  of the adaptive system k = JIC(k)xJJ2,  x = A ( k ) x  is 
bounded on [O, m) and x --t 0 as t --f ca. 

One consequence of the ideas in this paper has been the realiza- 
tion that strict adherence to the Certainty-Equivalence Principle 
of indirect control is unnecessarily limiting. In a sequel to this 
paper [28], it is shown that only by discarding one of the prin- 
ciple’s main tenets- pick feedback gains to stabilize the design 
model- it is possible to obtain with indirect control, algorithms 
with capabilities comparable to the classical algorithms of direct 
control. 

in the tuning theorem, imply that e* -+ 0. 

APPENDIX 

The proof of Lemma 1 depends on the following result which 
is a slight generalization of the Bellman-Gronwall Lemma. 
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Lemma 0: If for some constant C 2 0 and nonnegative 
piecewise-continuous functions a:[tl ,  f2) + W and P : [ t l ,  1 2 )  --t 
W, u: [ t l ,  t2) + R is a continuous function satisfying 

In view of (A.6) and the hypothesis that U is nondestabilizing 
along y with growth rate A', there must be constants C3 and C4 
such that 

Proof: Set o 5 7 5 t 5 i (A.9) 

Differentiating the expression for w and then replacing u ( t )  by 
+ + A 2 ( t ,  71fZ(YI(T), 7)dT. 

(t)e $ ~ ( 7 )  d~ II' 
From these equations and (6) it follows that: 

Iyl(t)I I Ce-A(t- ' l ) ( ly l  ( t l ) /  
gives 

-i: a ( r ) d r ,  w =a(u  - w ) + p e  

Hence, by (A. 3), 

Integrating this inequality and then using (A.3) we obtain 

P(7)d7, t E [ t l ,  f 2 ) .  
These inequalities, together with the definitions of J and 5 in 
(A.7) and (A.8), yield 

l " ( t ) l  

u ( t )  5 c + i ' e - - C  

Multiplying through by e L: 
~ ( t )  by u( t )  yields (A.2), which is the desired result. 

Thus, there exists a number X satisfying 

and then replacing e J: ( lY(tl)l n A ( t  -ti) 
Proof of Lemma I :  By-hypothesis, A *  +2CI fi < X/C. 

('4.4) 

< X' +2C1 a. Therefore, since the number 6 = -CI + 1 x < X/C + l e - ( ' 1 - r ) ( l @ ( 7 ) l  / Y ( T ) ~  + /h(7)1 + l&7)l)d7 

and Jm satisfies where b(7) = lb(7)I + 6 C 2 .  Multiplying both sides of the pre- 
ceding by eA('-']) and then using Lemma 0, we obtain 

f2C16 = X 

there follows 

62 > A * .  

To prove that y ( t )  is bounded on [0, i), it is enough to show 
that Multiplying through by and using (A.9) yields 

(A . l l )  
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where 

a( t )  = X - Ch - CC4/(1 + lJ(t)l). (A.12) 

In view of (A.4) there exists a positive number x < X - Cx. 
Define 

I -  

C S  = 1 e-'((-r)(lh(7)1+ ( b ( ~ ) ( ) d 7 .  

Since 1/11 and (61 are bounding, Cs <-m. 
Suppose ( J l  is not bounded on [0, t ) .  This and the continuity 

of Iy(t)l imply that for any -number Cg > 0 there must exist a 
closed interval J t l ,  t 2  I c [0, t )  such that 

Ip(tl)l = ~y(o)l + cC4/(h - CX - X) (AM) 

IJ(t)l 2 CC4/(X - CX - X), t E [ t i ,  t 2 ]  (A.14) 

lJ(t2)l > c6. (A.15) 

But (A.12) and (A.14) imply that n(t) 2 i, t E [ t l ,  t 2 1 .  From 
this, (A.13), and ( A . l l )  it follows that for t E [ t l ,  t 2 ]  

~ ~ ( t ) l  I C ~ ~ " ~ ~ J ( O ) I  +cc~/(x -CX - X) +cS. 
Choosing Cg equal to the right side of this inequality and evalu- 
ating the inequality at t = t 2 ,  leads to a contradiction of (A.15). 
Thus, J ( t )  is bounded wherever it exists; in view of (A.7) this 
must also be true of y ,  so y must exist and be bounded on [0, t).  

To show that y +x* when U and h are zeroing functions, 
it is enough to show that e = y - x* goes to zero as t + 00. 
Since X* satisfies (7), and y satisfies (3, from the variation of 
constants formula 

e( t> =d'A~(fr o)rl(o> + d ' A l ( t ,  7 ) f l ( y ( 7 ) ,  7)d7. l 
From this and (6) 

lel(t)l i Ce-A' Iyl(0)l + C/ ie -" ' " )@(r )dr  (A.16) 

where P ( t >  = Ip(t>l(lYi(t>l + C I  lu:(t))> +h( t ) .  Note that P is 
a zeroing function, since Iy\ is bounded and, by hypothesis, ((TI 
and Ihl are zeroing functions. From this and (A.16), it follows 
that e ( t )  + 0 as t + CO. 0 

@ S  + S denote 
the analytic function 

0 

Proof of Lemma 2: Let F: R"' '" e R" 
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To show that this is so, first note from (A.17) that Mi = L(E; )  
where L:S + S is the linear function defined by 

F ( C ,  A ,  M) = AM + MA' - MC'CM + Z .  (A.17) 

Fix (C, A )  E R. Since ( C ,  A )  is detectable (i.e., (A ' ,  C') is 
stabilizable), there must exist a unique symmetric solution R 
to the-Riccati equation F ( C ,  A ,  R )  = 0 (cf. [26, ch. 121). 
With R defining the value of R(.) at (C, A ) ,  R(.)  is well de- 
fined and unique. In addition, by the implicit function theorem 
(cf. [17, p. 273]), R(.)  will be analytic provided that at each 

nonzero. This in turn will be so if for each fixed (C, A )  E 0, the 
ii = n(n + 1)/2 matrices 

point (C, A )  E 0, the Jacobian of -(C, dF  A ,  M ) l M = ~ ( c , A )  is aM 

i = l  

are linearly independent, { E l , .  . . , E ,  } being a basis for S .  

L ( X )  = (A  - R(C,  A)C'C)X + X ( A  - R(C,  A)C'C)'. 

Since ( A  -R(C ,  A)C'C) is a stability matrix (cf. [26, ch. 12]), 
L( .) is an isomorphism. 

Now let { p l ; . . , p i }  be any set of numbers for which 
Ei",,p;M; = O;_then L ( x y = I p ; E ; )  = 0 and since L ( . )  is an 
isomorphism, Er= p ; E ;  = 6. But { E l , .  . . ,En} is an indepen- 
dent set, so p; = d, i = 1 , .  . . , A .  This proves that the M; are 
independent, that the implicit function is applicable, and thus that 
R( .) is analytic. 0 

Proof of ProR;ition I :  In view of Lgmma 2, the matrix 
function R:& + W defined by R(p)  = R(C(p) ,  A(p ) ) ,  de- 
pends continuously on q E Q, is continuously differentiable on &, 
and stabilizes A ( p )  - R(p)C'(p)C(p) ,  for p E E ,  q E Q. It fol- 
lows that H ( p )  = -R(p)C'(p) has all of the properties required 
for i) to be true. 

Let H be any matrix in e(C, A ,  E ) .  Then the pair (0, ( A @ ) +  
H(p)C(p)) ' )  is continuous on Q and continuously differentiable 
g d  detectable on E .  It follows from Lemma 2 that R(p)  = 
R(0, ( A ( p )  +H(p)C(p)) ')  has all of the properties required for 
ii) to be true. 

To prove iii), define 

X I  = inf. .X(R(p)), A2 = sup- h(R(p) )  
(4. P)cQxC (4, P ) E $ X E  

where b(.) and x(.) denote minimal and maximal eigenvalue, 
respectively. Since R is _conti_nuous on Q x & and positive definite 
on the compact subset Q x E ,  it follows that 0 < X I  I hZ < CO. 

Clearly 

X I  l l ~ 1 1 ~  I x ' R ( ~ ) x  5 X 2 l l ~ 1 1 ~ ,  x E W", E G,, p E E. 
(A.18) 

Forx E Rn, definey(t) = @(t ,  7)x and V = y ' ( t )R({ ( t ) )y ( t ) .  
In view of assertion ii), V = -J1yI/2; but from (A.18), l l ~ 1 1 ~  2 
(1/X2)V, so V I - ( 1 / X 2 ) V .  Clearly, ~ ( t )  5 e-1/h2(1-r)V(7) .  

Hence, I/@@, 7)x1I2 5 (A2 h l ) e - l ~ A 2 ( r - r ) I / ~ 1 / 2  or with 1 = 
1 / 2 6 ,  ( (@(t ,  T ) ( (  5 r~k&(/-~). From this, it follows 

Therefore, by (A.18), X I  Ily(t 1 1 2  I X2e-"x2(r-7) / lY (7> l l 2~  

that (28) holds with C = n2 f i 2 / X 1 .  0 
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