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Abstract

Convex Q-learning is a recent approach to reinforcement learning, motivated by the possi-
bility of a firmer theory for convergence, and the possibility of making use of greater a priori
knowledge regarding policy or value function structure. This paper explores algorithm design
in the continuous time domain, with finite-horizon optimal control objective. The main contri-
butions are

(i) Algorithm design is based on a new Q-ODE, which defines the model-free characterization of
the Hamilton-Jacobi-Bellman equation.

(ii) The Q-ODE motivates a new formulation of Convex Q-learning that avoids the approxima-
tions appearing in prior work. The Bellman error used in the algorithm is defined by filtered
measurements, which is beneficial in the presence of measurement noise.

(iii) A characterization of boundedness of the constraint region is obtained through a non-trivial
extension of recent results from the discrete time setting.

(iv) The theory is illustrated in application to resource allocation for distributed energy resources,
for which the theory is ideally suited.

1 Introduction

This paper concerns optimal control of the controlled nonlinear state space model

d
dtxt = F (xt, ut, t) , x0 ∈ Rn , (1)

in which the state x and input u evolve on n and m dimensional Euclidean space, respectively.
The goal is to approximate the solution to the finite time-horizon optimal control problem with
objective

J(x) =

∫ T
0
c(xt, ut, t) dt+ J0(xT ) , x = x0 , (2)

with cost function c : Rn × Rm × R→ R+, terminal cost J0 : Rn → R+, and fixed T > 0.
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The minimization over all inputs defines the value function J?(x), and for T0 ∈ [0, T ), the
cost-to-go is denoted J?(x, T0); this is the same minimum, but with the integral starting at T0

rather than 0. Subject to conditions on the model and cost functions, this satisfies the celebrated
Hamilton-Jacobi-Bellman (HJB) equation and a characterization of the optimal input as state
feedback u?t = φ?(x?t , t).

Approximation of a solution is based on concepts from reinforcement learning (RL), and in
particular convex Q-learning. A starting point is a sample path bound implied by the HJB equation:

c(xt, ut, t) + d
dtJ

?(xt, t) ≥ 0 , 0 ≤ t ≤ T (3)

This holds for any input-state sequence, and is tight, in the sense that the lower bound is achieved
for any t for which ut = φ?(xt, t). This inequality could be used in the formulation of a Q-learning
algorithm based on linear programming techniques, as in the prior work [15, 12, 16, 13]. Given a
function class {Jθ : θ ∈ Rd} we would use (3) with J? replaced by Jθ to define a constraint in a
nonlinear program, that would be linear if the function class is linearly parameterized.

The approach proposed in this paper is based on this idea, but with several steps introduced to
avoid the use of derivatives of observations. We arrive at filtering techniques similar to what was
introduced in [15], but the finite-horizon setting leads to an exact algorithm that wasn’t found in
the infinite horizon setting of this prior work.

Contributions

(i) The inequality (3) is refined to define the Q-ODE : a model-free characterization of the HJB
equation that lends itself to RL algorithm design–see Prop. 2.1.

(ii) A new exact formulation of convex Q-learning is obtained, extending [15]. The approach is
designed to avoid the numerical challenges that arise in continuous time models.

(iii) Convex Q-learning is always feasible, but boundedness has been an open topic for research.
Boundedness of the constraint region was characterized in [13] for models in discrete time. The
generalization to the continuous finite time-horizon setting of the present paper is entirely non-
trivial–see Prop. 3.2 and Prop. 3.3. These results are obtained in the general setting with linear
function approximation, so in particular the state space need not be finite.

(iv) Results from numerical experiments illustrate several applications of these findings: (a) the
marriage of MPC and Q-learning is facilitated because constraints can be imposed to ensure
convexity of the value function approximation; (b) special structure in the application considered,
an extension of economic dispatch, justifies a low dimensional function approximation architecture
for convex Q-learning.

Related Research Convex Q-learning is a recent technique in RL. While the first paper [15] is
over one decade old, and did focus on continuous time as in the present paper, this original work
laid out theory without attention to algorithms. The introduction of practical algorithms came only
recently in [1, 12, 13] (see [16, Ch. 5] for more history, and [11] for a history of RL in continuous
time).

Of course, Q-learning has a much longer history. Watkins’ original algorithm [22, 23] was
inspired by older temporal difference learning techniques, and versions of the temporal difference
are also part of convex Q-learning architectures.

The numerical work surveyed in this paper focuses in large part on the marriage of RL and
MPC. The usefulness of an approximate Q-function in MPC was first investigated in the dissertation
[10, 9] for deterministic control systems, and contemporaneously in [25] for MDPs. These works
are particular approaches to rollout for approximate dynamic programming—see [2] for a survey.
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There is also some connection with the older Lyapunov function approach to control design for
nonlinear control systems [5].

Beyond value function approximation, machine learning techniques have been used to approxi-
mate unknown or partially known system dynamics in MPC — see e.g. [17, 18] for use of Gaussian
Process regression to learn unmodeled dynamics. Conversely, the use of MPC to shorten the time
horizon in entropy regularized RL has been utilized in [3, 24].

Organization Section 2 sets the stage, with a review of MPC, optimality equations, and how
these lead to the Q-ODE. New Q-learning algorithms are introduced in Section 3 based on convex
programming, along with new theory characterizing boundedness of the constraint region. Appli-
cation to power systems operations is surveyed in Section 4. Conclusions and directions for future
research are presented in Section 5.

2 HJB Representations

A starting point in the derivation of the HJB equation is Bellman’s principle of optimality, which
is itself described in terms of the cost-to-go: for each T0 ∈ [0, T ), this is denoted

J?(x, T0) := inf
{∫ T

T0

c(xt,ut, t) dt+ J0(xT )
}

(4)

where the infimum is over continuous u on [T0, T ], subject to dynamics (1), and with xT0 = x.
The principle of optimality is expressed as the family of fixed point equations: for τ ∈ [0, T )

and with x0 = x,

J?(x) = inf
uτ0

{∫ τ

0
c(xt, ut, t) dt+ J?(xτ , τ)

}
Dividing each side by τ , and letting τ ↓ 0 leads to the HJB equation: using the shorthand notation
J?x = ∂xJ

?, J?t = ∂tJ
?,

0 = min
u
Q?(x, u, t) (5)

Q?(x, u, t) := c(x, u, t) + J?x(x, t) · F (x, u, t) + J?t (x, t) .

Letting φ?(x, t) denote the minimizer in (5), an optimal input-state pair is obtained via state
feedback

u?t = φ?(x?t , t)

Implications to Model Predictive Control We introduce MPC in continuous time only to
simplify comparisons to come. Assumed given is a “look-ahead” time horizon τ and “τ -terminal
cost” c•. For any time t0 ≥ 0, the input ut0 is obtained through the following steps. First, the
optimization problem is solved:

min
{∫ t0+τ

t0

c(xt0+t, ut0+t, t0 + t) dt+ c•(xt0+τ )
}

(6)

with xt0 given. The optimizer is a function of time {u◦t : t0 ≤ t ≤ t0 + τ}. The MPC input is
defined by ut0 = u◦t0 .

Typically τ will be much smaller than T , which in general will lead to performance degradation.
However, it follows from the principle of optimality that the MPC algorithm will minimize the
finite horizon objective function (2) if the τ -terminal cost is time varying, with

c•(x, t0 + τ) = J?(x, t0 + τ), for each x, τ and t0.

This ideal is approximated using reinforcement learning techniques in [10, 9, 25].
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Q-ODE The Q-ODE is a model-free characterization of the HJB equation (5), inspired by the
sample path inequality (3).

The function Q? that is minimized in (5) is often called the Q-function, and easily leads to
fixed point equations for reinforcement learning algorithm design for infinite-horizon discounted-
cost optimal control [15]. In this paper RL design is based on approximation of a different function:
fix a scalar σ > 0 and denote,

H?(x, u, t) :=−σJ?(x, t) +Q?(x, u, t) (7)

The use of the letter “H” recalls the close connection between the Q-function and the Hamiltonian
[15]. The optimal policy is equivalently expressed in terms of this function,

φ?(x, t) = arg min
u

H?(x, u, t) (8)

The first step in the Q-ODE construction is the application of the chain rule to obtain,

H?(xt, ut, t) = −σJ?(xt, t)
+
[
c(xt, ut, t) + d

dtJ
?(xt, t)

] (9)

This is valid for any input-state trajectory. The next step is to eliminate J? from (9), which
requires additional notation. For any continuous function H : Rn × Rm × R→ R, denote H(x, t) =
minuH(x, u, t). Application of (5) gives H?(x, t) = −σJ?(x, t), which on substituting into (9) and
rearranging terms imples the ODE,

d
dtH

?(xt, t) = σH?(xt, t)

+ σ
[
c(xt, ut, t)−H?(xt, ut, t)

]
H?(xT , T ) = −σJ?(xT , T ) = −σJ0(xT )

(10)

in which the second equation is treated as a boundary condition for the first. This motivates a time-
reversal: For any function H : Rn × Rm × R → R, its time-reversal along an input-state trajectory
is denoted

�
Hr :=H

(
xT−r, uT−r, T − r). When applied to H?, this becomes

�
H
?

r = H?(xT−r, T − r).
Equation (10) is transformed to the Q-ODE:

Q-ODE With boundary condition
�
H
?

0 = −σJ0(xT ),

d
dr

�
H
?

r = −σ
�
H
?

r − σ[�cr −
�
H
?
r ] , 0 ≤ r ≤ T . (11)

Solutions of (11) involve the filtered signals,

�
H
?
r := σ

∫ r

0
e−σ(r−s) �

H
?
s ds (12a)

�
Cr := σ

∫ r

0
e−σ(r−s)�cs ds (12b)

They are, of course, the solution to the ODEs

d
dr

�
H
?
r = −σ[

�
H
?
r −

�
H
?
r ]

d
dr

�
Cr = −σ[

�
Cr − �cr],

with boundary conditions
�
H
?
0 =

�
C0 = 0.
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The integral representation of the Q-ODE

�
H
?

r = −σe−σrJ0(xT )− σ
∫ r

0
e−σ(r−s)[�cs −

�
H
?
s] ds

is thus transformed into the algebraic representation

�
H
?

r = −σe−σrJ0(xT ) +
�
H
?
r −

�
Cr , 0 ≤ r ≤ T . (13)

The Q-ODE in the form (13) and the proposition that follows will inspire the MPC-Q algorithms
surveyed in the next section. The proof of Prop. 2.1 is in the Appendix.

Proposition 2.1 Suppose that a continuously differentiable solution to the HJB equation exists,
and that an optimal policy is obtained from the minimizer in (5).

Suppose that H : Rn × Rm × R→ R is continuous, and satisfies the following bound for every r
and every input-state trajectory:

�
Hr ≥ −σe−σrJ0(xT ) +

�
Hr −

�
Cr

with
�
Hr = σ

∫ r

0
e−σ(r−s) �

Hs ds.
(14)

Then H(x, u, r) ≥ H?(x, u, r) for all x, u, r. ut

3 Q-learning Algorithms

The algorithms introduced here are based on a family of approximations {Hθ : θ ∈ Rd}. For each
θ, the Hθ-greedy policy is defined by

φθ(x, t) = arg min
u

Hθ(x, u, t) (15)

The ultimate goal of Q-learning is to find the parameter θ? that leads to the best performance
among these policies. An indirect approach is usually applied, such as the projected Bellman
equation favored in much of the academic research. If we are so fortunate that Hθ? approximately
solves (13), then inverse dynamic programming arguments yield bounds on the performance of the
θ?-greedy policy [16].

The algorithms described in the following are motivated by Prop. 2.1, which motivates the
following definition of the Bellman error,

Bθr :=−
�
H
θ

r − σe−σrJ0(xT ) +
�
H
θ
r −

�
Cr. (16)

in which the filtered signal {�
H
θ
r : 0 ≤ r ≤ T } is defined as in (12a). The inequality (14) using

H = Hθ is equivalently expressed Bθr ≤ 0 for each r ∈ [0, T ].

Projected Bellman Error The algorithm described here is inspired by the DQN algorithm as
described in [16].

For each n, given the current estimate θn, the parameter update is obtained as the solution to
the nonlinear program,

θn+1 = arg min
θ

{
‖Bθ|θn‖2L2

+ 1
αn+1
‖θ − θn‖2

}
(17a)

Bθ|θnr :=−
�
H
θn
r − σe−σrJ0(xT ) +

�
H
θ
r −

�
Cr (17b)
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in which the non-negative sequence {αn : n ≥ 1} is analogous to the usual step-size sequence in
RL. The term (17b) is defined as in (16), with the first appearance of θ frozen. The L2 norm in

(17a) is the standard, ‖Bθ|θn‖2L2
:=
∫ T

0 [Bθ|θnr ]2 dr.
The algorithm is simplified significantly when the parameterization is linear:

Hθ(x, u, r) = θᵀψ(x, u, r), (18)

where the d-dimensional basis ψ might be chosen based on known structure of the control problem.
In this case, we write

�
Ψr := σ

∫ r

0
e−σ(r−s)�

ψs ds , 0 ≤ r ≤ T , (19)

with
�
ψs := ψ(xT−s, uT−s, T − s). This gives

�
H
θ
r = θᵀ

�
Ψr, and (17b) becomes

Bθ|θnr = −
�
H
θn
r − σe−σrJ0(xT ) + θᵀ

�
Ψr −

�
Cr (20)

Substituting (20) in (17a) and taking the gradient with respect to θ leads to the fixed point
equation that is solved to obtain θn+1,

0 = 〈Bθn+1|θn ,
�
Ψ〉+ 1

αn+1
[θn+1 − θn] (21)

in which the first term depends linearly on θn+1:

〈Bθn+1|θn ,
�
Ψ〉 :=

∫ T
0

�
ΨrBθn+1|θn

r dr .

If the resulting sequence of estimates {θn} is bounded, it follows that ‖θn+1 − θn‖ = O(αn+1),
which justifies the following approximation:

θn+1 = θn − αn+1〈Bθn|θn ,
�
Ψ〉 (22)

This is a variation of Watkins’ algorithm, with two significant changes: The basis is not tabular
(so the function class does not span all possible functions of state and action), and the temporal
difference in [22, 23] is replaced by the special version of the Bellman error introduced in this paper.

There is currently no theory to predict the success of DQN (21) or the recursion (22). Stability
of Q-learning is largely an open topic outside of very special cases (see discussion in [20, Section
3.3.2], [19, Section 11.2] and [16, Chs. 5,9]).

Convex Q-Learning Prop. 2.1 is motivation for the following “ideal” algorithm: Choose a
probability measure µ on Rn × Rm × [0, T ], and solve the nonlinear program,

θ? = arg min
θ

〈µ,Hθ〉 (23a)

s.t. Bθr ≤ 0, r ∈ [0, T ] (23b)

In practice, the infinite number of constraints in (23b) must be relaxed. In this paper, we
replace the constraints in (23b) by the single constraint,

1

T

∫ T
0

[
Bθr
]
+
dr ≤ Tol (24)

where Tol > 0 is a small constant, and [s]+ = max(0, s).
This is a convex program under mild conditions. The convexity assumption in Prop. 3.1 will

hold when the function class is linear (i.e., defined with respect to a basis via (18)).

Proposition 3.1 Suppose that the Bellman error (16) is a convex function of θ for each r. Then
the constraint regions (23b) and (24) are each convex subsets of Rd. ut
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3.1 Exploration and Constraint Geometry

The following assumptions are imposed throughout the remainder of the paper:

Assumption A1: The function class is linear, {Hθ = θᵀψ : θ ∈ Rd}. The basis ψ : Rn×Rm×R+ →
Rd and the cost function c : Rn × Rm × R+ → R+ are continuously differentiable (C1).

Moreover, for each θ ∈ Rd, the minimum in (15) defines a continuous feedback law φθ : Rn×R+ →
Rm. And, with ut = φθ(xt, t) for 0 ≤ t ≤ T there is a solution to the state equation (1). ut

The constraint set associated with (24) is denoted

Θ =
{
θ ∈ Rd :

1

T

∫ T
0

[
Bθr
]
+
dr ≤ Tol

}
(25)

It is always non-empty since it contains the origin, but boundedness of Θ has been an open topic
for research.

Necessary and sufficient conditions for boundedness will be obtained based on algebraic con-
ditions on the basis along input-output sample paths obtained for training. To ease analysis and
save space, we adopt the notation,

ψt := ψ(xt, ut, t) ,
�
ψr := ψT−r , 0 ≤ t, r ≤ T .

The covariance matrix is denoted

Σ :=
1

T

∫ T
0
ψ̃sψ̃

ᵀ
s ds , with ψ̃s := ψs −

1

T

∫ T
0
ψt dt (26)

The conditions that follow are the focus of analysis in the remainder of this section. The third is
a standard assumption intended to capture “sufficient exploration” in temporal difference learning
[21, 16]. In the context of this paper, it is Condition E1 that is most valuable: Prop. 3.3 tells us
that Θ is bounded under this condition, and hence what should be considered “good exploration”.

Condition E1: The set {ψt : 0 ≤ t ≤ T } is not restricted to any half space in Rd.

Condition E2: The only vector v ∈ Rd satisfying
�
H
v

r ≥
�
H
v
r for all 0 ≤ r ≤ T is v = 0.

Condition E3: Σ > 0, with Σ defined in (26).

Proposition 3.2 If Condition E1 holds then Conditions E2 and E3 follow.

We postpone the details of the proof to the Appendix. The relationship between E1 and E3 is
straightforward, since the latter is equivalent to the statement that {ψt : 0 ≤ t ≤ T } is not
restricted to any subspace in Rd. As part of the proof that E1 implies E3, it is shown that if {ψt}
is not restricted to any half space in R, so is the difference {

�
ψr −

�
Ψr}.

Prop. 3.2 combined with the following establishes that boundedness of Θ is equivalent to Con-
dition E2. The proof is postponed to the Appendix.

Proposition 3.3 If Condition E1 holds then Θ is bounded. Conversely, if Θ is bounded then
Condition E2 holds.
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4 Optimal Dispatch of Energy Resources

This section serves to illustrate the marriage of convex Q-learning with MPC, and show that it
may provide efficient solutions to complex control problems found in power systems applications.

We consider the optimal allocation of distributed energy resources (DERs) in a dynamic setting.
The goal is to schedule generation and other “balancing assets” to meet supply-demand constraints
while minimizing cost, similar to economic dispatch. It was discovered recently that a form of state
space collapse can be expected [14].

It is assumed that the balancing assets are derived from flexible loads (such as water heaters or
water pumping) along side batteries. We will use the term virtual energy storage (VES) for both
real and virtual batteries.

4.1 Dispatch model

It is assumed that there are M ≥ 2 classes of VES, in addition to generation (which is modeled as
a single resource, i.e., the aggregation of all the traditional generators in the balancing area). The
goal is to optimally allocate these resources to balance the net load ` over the time horizon [0, T ].

Following [7, 4, 14], the state of charge (SoC) for the ith VES class is assumed to evolve
according to the linear dynamics

d
dtx

i
t = −αixit − zit 1 ≤ i ≤M , (27)

in which −zit is power deviation at time t, and αi is a non-negative leakage parameter. For a TCL,
the SoC xit is an affine function of internal temperature, and αi corresponds to the thermal time
constant.

Formulation of a cost function A cost function is designed based on three goals: maintain the
SoC within bounds, and penalize peaks and ramps in generation. To impose a cost on ramping it
is necessary to augment the state description, introducing

uit := d
dtz

i
t . (28)

We view (27) and (28) as a linear dynamical system with the augmented state xa := (x, z), and
control input u.

The dispatch problem is formulated as a finite-horizon optimal control problem:

min

∫ T
0
c(xt, zt, ut, t) dt+ J0(xaT ) (29a)

s.t. `t = gt + zσt (29b)
d
dtgt = γt (29c)
d
dtx

i
t = −αixit − zit (29d)

d
dtz

i
t = uit, 1 ≤ i ≤M , 0 ≤ t ≤ T (29e)

with xa = (x0, z0) ∈ RM given, zσt =
∑
zit.

The constraint (29b) ensures that the supply from generation, batteries, and VES matches net
load. The dynamics of generation ramping are given by (29c).

The terminal cost J0 in (29a) was chosen to be quadratic function, of the form J0(x, z) =
xᵀDx+ k`(z

σ − `T )2 with k` > 0 and D > 0 diagonal (M ×M). The cost function c was taken as
the sum of three components, reflecting the three goals:

c(xt, zt, ut, t) = cX(xt) + κ
[
uσt − d

dt`t
]2

+ κ`[z
σ
t − `t]2
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with uσt =
∑
uit, and κ, κ` positive constants. A soft constraint on capacity is imposed via

cX(x) =

M∑
i=1

ci(xi) , x ∈ RM , (30)

where each ci : R → R+ is smooth and strongly convex. In the numerical results they were chosen
convex, of the same form as in a portion of the numerical results from [14].

This optimal control problem falls in the category of singular optimal control because the cost
is not coercive in u (there is a cost on the sum uσt , and not on the individual terms uit) [6, 8].

A major conclusion of [14] is that the cost to go for any time T0 can be expressed as a convex
function of xσ,a :=(xσ, zσ) with xσ =

∑
xi (this is a consequence of the state space collapse referred

to earlier). However, in the prior work it is assumed that J0 ≡ 0. The conclusions will change
when J0 is coercive, as assumed in the numerical results that follow. However, state space collapse
provides ample motivation for the choice of function class in Q-learning.

Function approximation architecture The function approximations considered so far are model
based, in which we begin with an affine function class for approximation of the value function:

Jθ(xa, t) = J0(xa) + θᵀψ(xσ,a, t) , θ ∈ Rd , (31)

in which ψ : R2×R+ → Rd. The representation (7) then motivates the function class, with candidate
approximations

Hθ(xa, u, t) :=−σJθ(xa, t) +Qθ(xa, u, t)

Qθ(xa, u, t) := c(xa, u, t)

+ Jθx(xa, t)·F (xa, u, t) + Jθt (xa, t)

The vector field F is not difficult to estimate in this particular example . The impact of model
uncertainty is investigated in the numerical results that follow.

To match the ideal Jθ(xa, T ) = J0(xa), the basis was designed to ensure ψ(xσ,a, T ) = 0 for each
xσ,a ∈ R2. It is convenient to take a typical basis function of the form

ψi,j(x
σ,a, t) = qi(x

σ,a)pj(t) (32)

in which qi ∈ {(xσ)2, xσ, (zσ)2, zσ, 2xσzσ, 1} for 1 ≤ i ≤ 6. The functions {pj} were taken to be
a mixture of Fourier basis elements and polynomials. Through trial and error we arrived at three
possibilities: we took p1(t) = t2, and for j ≥ 2 the function pj was an element of the set

{1− cos(ωit) : 1 ≤ i ≤ nf}

with nf = 30 in all experiments. Thus, d = 5× 31 = 155.
The basis was chosen so that the functions of time are non-negative. Writing θ ∈ Rd in com-

patible form so that θᵀψ =
∑

i,j θi,jψi,j , the constraint θi,j ≥ 0 was imposed in implementations of

convex Q-learning for any i, j for which ψi,j(x
σ,a, t) = (xσ)2pj(t) or (zσ)2pj(t). It was found that

this helped to ensure that the solution θ∗ would result in a cost to go approximation Jθ
∗
(xa, t) that

is convex in its first variable for each t.

4.2 Simulations

The system parameters for VES and net load ` were taken from [14]. The optimal dispatch problem
(29a) was considered with M = 5 VES classes: ACs, residential WHs (fwh), commercial WHs (swh),
refrigerators (rfg), and pool pumps (pp). The time horizon T was set to 24 hours, and σ = 5×10−4

in the convex Q learning algorithm and the definition of Hθ.
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Training architectures Two strategies were employed to construct the convex program (23). In
each case data was collected from 44 independent runs, differentiated as explained in the following.

1. Q nominal training: initial conditions xa sampled uniformly from R2M at random, tra-
jectories are generated from the nominal model with parameter α ∈ RM+ . These trajectories were
then used to solve the convex program (23). The resulting solution of (23) gives a value function
approximation denoted JNom (of the form (31) for the parameter estimate θNom).

2. Q robust training: In addition to sampling initial conditions xa, in each batch the model
is perturbed via

α̃i(ε, V ) = αi × V i (33)

where {V i} were selected i.i.d. and sampled independently of xa from [1− ε, 1 + ε], with ε ranging
from 0 to 1. We then generate trajectories with initial condition xa using the perturbed model
α̃. These trajectories are used to solve (23), which defines a value function approximation denoted
JRob (of the form (31) for the parameter estimate θRob).

Performance evaluation To evaluate the outcome of convex Q-learning training required addi-
tional experiments. For testing performance in MPC, we note that the policy defined by (6) can
be defined as (time varying) state feedback. The policy φ = φNom and φ = φRob were obtained on
replacing c• in (6) with JNom and JRob, and φ = φMPC based on MPC with zero penalty term c•.
The policies based on Q-learning will be called MPC-Q.

For any feedback policy ut = φ(xat , t), the associated total cost is denoted

Jφ(xa) =

∫ T
0
c(xat , ut, t) dt , xa = (x(0), z(0)) (34)

In the numerical results summarized below we compared this with the optimal J?(xa) from specific
initial conditions, and also the cost to go. This section concludes with experiments illustrating the
impact of model error, for which the performance metric was the average over independent trials,
with both the initial condition and model perturbed in each trial.

Experimental results 1: testing on nominal model. The first experiment was designed to
investigate the loss in performance introduced from perturbations of the model during training.

0 6 12 18 24time (hrs)
10-6

10-4

10-2

100

Q nominal training
Q robust training

Figure 1: Normalized error with convex Q-learning, evaluated along an optimal trajectory.

The normalized error between the approximation Jθ
∗

and the optimal cost to go J? was obtained
for the two training approaches with Jθ

∗
indicating either JNom (nominal training) or JRob (robust

training).
In these experiments the initial condition was fixed at a typical value, and the true optimal

solution {x?t , z?t , u?t : 0 ≤ t ≤ T } was obtained. For each t, the cost-to-go J?(x?t , z
?
t , t), was compared

with JNom(x?t , z
?
t , t) and JRob(x?t , z

?
t , t). It is seen in Fig. 1 that the performance gap using JNom is
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less than 0.008% throughout the run. Though the gap using JRob is larger, we will see its more
robust to model perturbations.

2 3 4 5 6 7 14Time Horizon/(20mins)
1

1.2

1.4

1.6

1.8

2

Q nominal training
Q = 0

Q robust training
x MPC performance

Figure 2: Performance of MPC-Q on the nominal model.

The next results show the performance of MPC as described above (34). Fig. 2 shows data from
one typical experiment, performed on the nominal model. It is surprising to see that the policy φRob

gave the smallest error from J? for each look-ahead horizon considered (as small as 40 minutes).
Performance for φMPC (with c• ≡ 0) was far worse.

Fig. 3 shows the power trajectories obtained using MPC-Q with Q robust training mirrors the
optimal solution with look-ahead horizon τ = 40mins, and how MPC dramatically fails (we omit
plots for MPC-Q with Q nominal training since it has similar performance).

AC f-wh s-wh fridge pp

hrs0 12 24
-4

0

4

po
w

er
 (G

W
)

0 12 24
-4

0

4

0 12 24
-4

0

4
Q robust training Optimal solutionQ = 0

Figure 3: Trajectories of power deviation from each load class.

Experimental results 2: testing on perturbed models The impact of model uncertainty is
investigated next.

To test a given policy φ we conducted Np independent trials for a range of ε ≥ 0, and averaged
the resulting total cost obtained in each trial to obtain

Ĵφ
ε =

1

Np

Np∑
k=1

Jφ(xak) (35)

For each k the initial condition was chosen randomly, as well as the perturbation of the model
defined by α̃k via (33) for 1 ≤ k ≤ Np, with Np = 50.

Fig. 4 shows that Ĵφ
ε is nearly independent of ε for either policy φ = φNom or φ = φRob, with the

latter giving better performance for each value of ε tested. The results for MPC without penalty
term is not shown since the ratio was always greater than 3.

In all experiments conducted to date, we find that Q robust training increases the robustness
of MPC-Q. Recall that results in Fig. 2 indicate that the robust training can improve closed loop
performance even for the nominal model.
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0 0.5 1
1.2

1.3

1.4

1.5

1.6

x MPC performance

Q robust training

Q nominal training

ε

Figure 4: Robustness of MPC-Q: normalized averaged total cost in MPC-Q as a function of ε with
look-ahead horizon 40mins.

5 Conclusions

The Q-ODE for finite-horizon optimal control is a new model-free characterization of the HJB
equation that lends itself to the formulation of reinforcement learning algorithms. Two were high-
lighted in this paper: the convex Q-learning algorithm that has been the focus, and a variation of
DQN. Convex Q-learning was the winner in terms of reliability and performance for reasons that
are not clear at this time.

Theory concerning the impact of disturbances and measurement noise is an important area for
future research. We believe the value of filtering in convex Q-learning will be apparent when we
include measurement noise in simulation experiments, but currently have no guidelines to optimize
σ or opt for a different approach to smoothing the Q-ODE.

The use of state space collapse to design a function approximation architecture was very success-
ful in the example considered. This will likely prove valuable in other applications. Such extensions
may require techniques to characterize or approximate the manifold on which an optimal solution
evolves, or perhaps we can create algorithms that will “learn” this structure.

A Appendix

The proof of Prop. 2.1 requires Grönwall’s inequality in this simplified form:

Lemma A.1 (Bellman-Grönwall) Let w be a continuous real-valued function on the interval
[0, T ]. Suppose that the following integral bound holds with the constants α, β ≥ 0:

wr ≤ α+ β

∫ r

0
ws ds , 0 ≤ r ≤ T

Then, wr ≤ αeβr for 0 ≤ r ≤ T .

Proof of Prop. 2.1: Since H ≥ H, it follows from (14) that for any trajectory,

�
Hr ≥ −σe−σrJ0(xT ) +

�
Hr −

�
Cr. (36)

For any optimal trajectory {x?r , u?r} we have
�
H
?
r =

�
H
?

r , so from (13),

�
H
?

= −σe−σrJ0(xT ) +
�
H
?
r −

�
C?r (37)

Denote ∆r :=
�
H
?
r −

�
Hr. Subtracting (36) from (37) then yields,

∆r ≤
�
H
?
r −

�
Hr =

∫ r

0
e−σ(r−s)∆s ds,

12



where the equality on the right follows from the definitions of H and H?. Setting wr = eσr∆r and
applying Lemma A.1 gives

wr = eσr∆r ≤ 0, 0 ≤ r ≤ T ,

which in turn implies ∆r ≤ 0, thereby yielding H ≥ H? along this optimal trajectory.
It follows that H(x, u, r) ≥ H?(x, u, r) for any (x, u, r), since there is an optimizing trajectory

that passes through any such triple. ut
Proof of Prop. 3.2: To establish that Condition E1 implies E2, we establish the contrapositive:
if there is a non-zero vector v satisfying

�
H
v

r ≥
�
H
v
r for each r, then the set {

�
ψr : 0 ≤ r ≤ T } is

restricted to a half space in Rd.
If such v exists, then by definition of H,

Hv(xT−r, u, r) ≥
�
H
v

r ≥
�
H
v
r , u ∈ Rm.

Letting pr = vᵀ
�
ψr, and yr = vᵀ

�
Ψr, this inequality implies that pr ≥ yr and by definition,

yr = σ

∫ r

0
e−σ(t−r)pτdτ

d

dr
yr = −σ(yr − pr),

(38)

On applying the boundary condition y0 = 0,

yr = −σ
∫ r

0
(yτ − pτ )dτ ≥ 0.

Letting δr = pr − yr, which is non-negative, gives pr = yr + δr, and for each 0 ≤ r ≤ T ,

vᵀ
�
ψr = −σ

∫ r

0
(yτ − pτ )dτ + δr ≥ 0 , .

Hence Condition E1 fails when E2 fails, as claimed.
To show that Condition E1 implies E3, we again establish the contrapositive: if det(Σ) = 0,

then the set {ψt : 0 ≤ t ≤ T } is restricted to a half space in Rd.
If v ∈ Null(Σ) with v 6= 0, then

0 = vᵀΣv =
1

T

∫ T
0

(vᵀψ̃t)
2 dt

Since {ψ̃t} is continuous in t, it follows that

vᵀψ̃t = 0 , for 0 ≤ t ≤ T .

This implies that {ψt} is restricted to a half space, so that Condition E1 fails. ut
Proof of Prop. 3.3: There are two parts to the proof. We first establish that Θ is bounded under
E1. Prop. 3.2 tells us that E2 follows from E1, so it suffices to show that if Condition E2 holds
then Θ is bounded. We establish its contrapositive: if Θ is unbounded, then there is a non-zero
vector v satisfying

�
H
v

r ≥
�
H
v
r for 0 ≤ r ≤ T .

If Θ is unbounded, then for each m ≥ 0, there exists θm such that ‖θm‖ ≥ m, and

1

T

∫ T
0

max

{
0,Jr −

�
H
θm

r +
�
H
θm

r

}
dr ≤ Tol (39)

13



with Jr :=−e−σrJ0(xT )− �
Cr.

Dividing (39) by ‖θm‖ gives:

1

T

∫ T
0

max

{
0, Jr‖θm‖ −

�
H
θm

r
‖θm‖ +

�H
θm

r
‖θm‖

}
dr ≤ Tol

‖θm‖
(40)

Denote θ̌m = θm/‖θm‖. By the definition of
�
H
θm

,

1

‖θm‖
�
H
θm

r = min
u

{ 1

‖θm‖
Hθm(

�
xr, u, r)

}
=

�
H
θ̌m

r

Thus, we can write (40) as

1

T

∫ T
0

max

{
0,
Jr
‖θm‖

−
�
H
θ̌m

r +
�
H
θ̌m

r

}
dr ≤ Tol

‖θm‖
(41)

Since ‖θ̌m‖ = 1 for each m, there exists a convergent subsequence {θmi} with limit satisfying
‖θ̌‖ = 1:

lim
i→∞

θmi

‖θmi‖
= lim

i→∞
θ̌mi = θ̌

The inequality (41) then gives

1

T

∫ T
0

max
{

0,−
�
H
θ̌

r +
�
H
θ̌
r

}
dr

= lim
i→∞

1

T

∫ T
0

max
{

0, 1
‖θmi‖Jr −

�
H
θ̌mi

r +
�
H
θ̌mi

r

}
dr

≤ 0

Continuity of {
�
H
θ̌

r,
�
H
θ̌
r : 0 ≤ r ≤ T } implies the desired conclusion: E2 fails, with v = θ̌,

�
H
θ̌

r ≥
�
H
θ̌
r , 0 ≤ r ≤ T .

For the converse we once again establish the contrapositive: if Condition E2 fails, we show that
Θ is unbounded.

Failure of E2 implies that there is v 6= 0 satisfying
�
H
v

r ≥
�
H
v
r for 0 ≤ r ≤ T . To show that Θ is

unbounded we fix θ0 ∈ Θ, and show that θω := θ0 + ωv ∈ Θ for each ω ≥ 0. Because the function
class is linear, we have

�
H
θω

r := min
u
{Hθω(xT−r, u, T − r)}

= min
u
{Hθ0(xT−r, u, T − r) + ωHv(xT−r, u, T − r)}

This and sub-linearity of the minimum gives for each r,

�
H
θω

r ≥
�
H
θ0

r + ω
�
H
v

r .

It follows that the Bellman error for θω admits the bound,

Bθωr := Jr −
�
H
θω

r +
�
H
θω

r

≤ Jr − [
�
H
θ0

r + ω
�
H
v

r ] + [
�
H
θ0

r + ω
�
H
v
r ]

14



and on rearranging terms,
Bθωr ≤ Bθ

0

r + ω[−
�
H
v

r +
�
H
v
r ]

By assumption, we have −
�
H
v

r +
�
H
v
r ≤ 0 and thus Bθωr ≤ Bθ

0

r . Consequently, θω ∈ Θ for every
ω, as claimed:

1

T

∫ T
0

max{0,Bθωr } dr ≤
1

T

∫ T
0

max{0,Bθ0r } dr ≤ Tol ut
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[20] C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intel-
ligence and Machine Learning. Morgan & Claypool Publishers, 2010.

[21] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Trans. Automat. Control, 42(5):674–690, 1997.

[22] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
Cambridge, UK, 1989.

[23] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.

[24] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 1714–1721. IEEE, 2017.

[25] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov. Value function approximation and
model predictive control. In 2013 IEEE symposium on adaptive dynamic programming and
reinforcement learning (ADPRL), pages 100–107. IEEE, 2013.

16

http://www.cs.ualberta.ca/~sutton/book/the-book.html

	1 Introduction
	2 HJB Representations
	3 Q-learning Algorithms
	3.1 Exploration and Constraint Geometry

	4 Optimal Dispatch of Energy Resources
	4.1 Dispatch model
	4.2 Simulations

	5 Conclusions
	A Appendix

