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Abstract-We discuss several aspects of the mathematical 
foundations of the nonlinear black-box identification 
problem. We shall see that the quality of the identification 
procedure is always a result of a certain trade-off between 
the expressive power of the model we try to identify (the 
larger the number of parameters used to describe the model, 
the more flexible is the approximation), and the stochastic 
error (which is proportional to the number of parameters). A 
consequence of this trade-off is the simple fact that a good 
approximation technique can be the basis of a good 
identification algorithm. From this point of view, we consider 
different approximation methods, and pay special attention 
to spatially adaptive approximants. We introduce wavelet and 
‘neuron’ approximations, and show that they are spatially 
adaptive. Then we apply the acquired approximation 
experience to estimation problems. Finally, we consider some 
implications of these theoretical developments for the 
practically implemented versions of the ‘spatially adaptive’ 
algorithms. 

1. INTRODUCTION 

The problem we are addressing in this paper is 
how to infer relationships between past input- 
output data and present/future outputs of a 
system when very little a priori knowledge is 
available. This is known as black-box modeling. 
There is a rich and well-established theory for 
black-box modeling of linear systems (see e.g. 
Ljung, 1987; S6derstrom and Stoica, 1989). It 
was not until the last few years that modeling 
and identification of nonlinear systems attracted 
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wide interest in the control community. So far, 
almost all attention has been concentrated on 
one single structure-neural networks. However, 
nonlinear modeling has been studied for a long 
time in the statistics community, where it is 
known under the label non-parametric regres- 
sion. This area is quite rich, and numerous 
methods exist. The purpose of this paper is to 
give an exposition of presently available 
techniques of nonlinear modeling in a fairly 
unified and structured way. It is geared towards 
the mathematical foundations, and exposes basic 
principles as well as presently available mathe- 
matical results. This exposition is, however, not 
exhaustive either with respect to presentation of 
existing methods or with respect to mathematical 
results. In the companion paper Sjoberg et al. 
(1995) the user aspects and the algorithmic 
aspects are extensively discussed. 

1.1. Basic mathematical problems 
The basic problem that we shall address 

throughout this paper is now precisely stated. 
We first state the general problem, and then we 
discuss some features of dynamic system 
modeling. 

1.1.1. The general problem. 
Problem 1. (Non-parametric regression.) Let 
(X, Y) be a pair of random variables with values 
in 2?= Rn and 9 = R respectively. A function 
f: 2’~ 9 is said to be the regression function of 
YonXif 

E(Y I Xl = f(X). (1) 

A typical case is Y =f(X) + e, where e is 
zero-mean and independent of X. For N 2 1, fN 
will denote an estimator of f based on the 
random sample 0;” = {(X,, Y,), . . . , (X,, Y,)} of 
size N from the distribution of (X, Y), i.e. a map 

56 ~?44%?.), (2) 
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where, for fixed 0;“, x H?, (0;“, x) is an estimate 
of the regression function f(x). The family of 
estimators of JN,, N 11, is said to be parametric if 
fN E F for all N 2 1, where F is some set of 
functions defined in terms of a fixed number 
ofunknown parameters. Otherwise, the family of 
estimators fNNt NZ 1, is said to be y101z- 
parametric. 

For the sake of convenience, we shall often 
refer to X and Y as the input and output 
respectively (although they do not need to be 
such in actual applications). 

Intuitively, the difference between the output 
and the regression function, Y - E(Y 1 X), is the 
part of the output that cannot be predicted from 
past data. 

Two typical problems are considered in the 
statistical literature, namely 

non-parametric regression with random design 
(or sampling), where it is assumed that the 
variables X, are random, independent, and 
identically distributed on [0, lid with density 

g(x); 

non-parametric regression with deterministic 
design (or sampling), where it is assumed that 
the input variables Xi are non-random; the 
simplest case of deterministic design is the 
regular design, where the inputs Xi form a 
regular grid (e.g. f R + R and X, = i/N). 

In the remainder of this section we consider the 
random design only. 

1.1.2. Non-parametric regression with 
dynamics. Consider the following dynamical 
system: 

Y, = f(~i) + e;, i = 1,. . , N, 

where Y E R and @i E Rd are observed, and e, is 
a white noise as above. We assume that 

pi = (~_l,. . . ) ~_,; U,, . . . ) Ui_p)j (3) 

where U, E R! are the inputs (m + p = d). For 
example, if @; = (Y_,, . . . , &) then 

r.=f(&,, . . . , x-d)+ej. (4) 

In analogy with the corresponding parametric 
model, we call this system a non-parametric 
autoregression or a functional autoregression of 
dimension d (NAR(d)). As an interesting 
application, we can consider a simple controlled 
NAR model for adaptive control: 

I: = f(@J + Q + e;, (5) 

where @‘i = (Y_,, . . . , I’&,), and Ui is the 
control. The following question can be con- 
sidered: how does the choose the control (U;) for 
the system (5) to track some reference trajectory 
y = (y;), or, at least, how does one choose U, in 

order to minimize EY:, or, simply, to stabilize 
the system (5)? If the function f(a) were known, 
we could use the control 

u, = -f(a$) 

to obtain Y = e;. Clearly, this is a ‘minimum- 
variance’ control, since EY? 2 crz = Ee?. If f is 
unknown, a possible solution consists in 
performing non-parametric ‘certainty equiv- 
alence control’: compute an estimate fN of the 
regression function f based on the observations 
of the input/output pair (@i, r/i - Ui), and then 
take 

u, = -$(@;). (6) 
To analyze the certainty equivalence control (6), 
let us consider the control cost 

It is easily checked that 

E(J(@i) -f (Q;))‘+ 0 as i--+ cc (7) 
implies EQN + uf, and $(G+) - f(+;)+O a.s. 
implies QN-+ a: a.s. Thus condition (7) is 
instrumental in analyzing this problem, and we 
shall informally discuss how it can be 
guaranteed. 

Denote by @-;’ = [@, . . . aj-,lT the vector of 
all available inputs up to time i - 1, and by 
&’ = [cpO . . . cp_,lT the corresponding vector 
of integration variables. Let P(o) denote the 
distribution of the vector sequence (@i) when 
driven by the unknown ‘true’ model (5), (6), let 
for some 1 5 k << i, P,,,k(.) be a distribution of 
@i-;“, and let p~,,~~&*) be a conditional density 
of the distribution of 4+ given @h-” (we assume 
that such a density exists). We have 

-%%I?) -f (W’ 

Note that if the closed-loop system (5), (6) is 
stable, one can reasonably take equal weights for 
the observations $, . . . , Qi in the estimate A. In 
such a case the estimate &(a) is asymptotically 
(as i+ co) slowly varying, i.e. 8 -f;_k. On the 
other hand, the conditional density P~,,~~~I 
converges exponentially fast to the density p&) 
of the invariant distribution of the Markov chain 
(G+) (again we suppose that the correspondent 
quantities exist). Thus we can write 

E K(*i) - f (@i)l’ - 1 Pa,,k(d&k) 

x 
I 

&k(X) - f (~)12P@,,@~-k(x) h 

E lt(@;) - f (WI’ 

- g(x) - f (x)12Pa(X) do G Rip, f )* 
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Thus, as a conclusion, in any case, the crux in 
analyzing this adaptive minimum variance 
nonlinear control consists in getting bounds for 
the error in estimating the unknown function f 
Note that the error measure we use in this case 
(the risk Z#,ff>) is rather specific: the error 
norm is weighted with the density of observation. 
Hence, in addition to proving consistency for the 
estimates, getting such bounds is an important 
question. 

Remarks. The above discussion can be sum- 
marized as follows. 

Non-parametric estimation of regression fun- 
ctions is instrumental in various problems 
such as adaptive identification and control. 

Averaged L, norms of estimation error for 
various ps are natural candidates as a figure 
of merit. 

Having bounds for the estimation error is of 
paramount importance. This has been illustr- 
ated on the adaptive control example. 

1.2. Basic principles and limiting factors 
There are two factors that limit the accuracy 

with which the regression function f can be 
determined. Firstly, only a finite number of 
observation points? (xk)FZ, are available. This 
means that f(x) at points x other than those that 
are observed must be obtained from the 
observed points by interpolation of extrapola- 
tion. Secondly, at the points of observation, xk, 
k=l,... , N, f (xk) is observed with an additive 
noise ek = yk - f (xk). Clearly, the observation 
noises ei introduce a random component in the 
estimation error. A general approach to the 
problem is the following: we first choose an 
approximation method, i.e. substitute the func- 
tion in question by its approximation; then we 
estimate the parameters involved in this 
approximation. This way, we reduce the problem 
of function estimation to that of parametric 
estimation, though the number of parameters we 
have to estimate is not bounded a priori and can 
be large. To limit the number of parameters, 
some smoothness or regularity assumptions have 
to be stated concerning 8 Generally speaking, 
smoothness conditions require that the unknown 
function f belong to a particular restricted 
functional class. 

To see how the stochastic and deterministic 
approximation errors are combined in the 
estimation problem, consider, for simplicity, the 
following example. Suppose that N noisy 

t We distinguish between the random variables (Yk, X,) 
and the corresponding observations (yk, xk), 

observations of an unknown function f: lR+ Iw 
are available: 

K = f(Xi) + e;. (8) 

Suppose that f can be expressed in the form of 
some infinite expansion 

f(x) = i: TgAx), (9) 
j=O 

where (g,(x)), j = 0, . . . is a known family of 
basis functions. This is our approximated model. 
Our ‘smoothness’ assumption about f is that the 
coefficients 137 decrease in a certain way as 
j+ m. Thus the problem of estimating f reduces 
to the estimation of a suitable truncation of the 
vector of all parameters O* = [0T , . . . , IT, using 
the observations (Xi, YJ. An estimate 6, of O* 
can be obtained by minimizing the following 
criterion: 

where 11. I[ is some suitable norm (Euclidean for 
instance), and the row vector g(x) collects the 
components gj(X) corresponding to the 0, 
selected in 6,,,. Suppose that (Xk) is a realization 
of a stationary stochastic process; then the 
following holds asymptotically as N+ a: 

E IIY - @dX)ll’ 

= E lie/* + [I(@ - E&)‘g(X)~~* 
, 2 

noise lxas 

+ E II (E6N - ON)Tg(X) II* 

As we shall see later, usually E6j = 07, and the 
bias term in the right-hand side does not depend 
on the data record. Thus the ‘bias’ is in fact the 
approximation error due to the truncation of the 
infinite vector O*. Let n be the dimension of 6)N. 
Increasing n would reduce the bias to zero. But 
the variance term is typically O(n/N); thus 
increasing n increases the variance term as well. 
The optimum occurs when both bias and 
variance terms are balanced. In Sections 5-8 we 
shall see several examples of how this com- 
promise is met. For a further empirical 
discussion of the bias/variance trade-off and its 
implications for identification, the reader is 
referred to Sjbberg et al. (1995). 

The bottom line is that, to cope with the bias 
variance trade-off, it is important to use an 
efficient approximation technique, i.e. one that 
gives a small approximation error with few 
parameters. However, which approximation 
method is effective depends on the particular 
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function class to which the function is assumed to 
belong. Since guessing appropriate function 
classes requires prior information, which is 
hardly accessible to the engineer, it is important 
to come up with approximation methods that are 
flexible and are as independent as possible of the 
particular function class. This will be a recurring 
theme throughout this paper. 

1.3. Structure of the paper 
The paper is organized as follows. In the next 

section different smoothness classes are dis- 
cussed, together with associated approximation 
techniques, from the point of view of their utility 
for estimation. ‘Spatially uniform’ smoothness 
classes as well as classes of functions with sparse 
singularities are considered. For the latter 
classes, it is shown that wavelets play an 
important role. There is a particular problem 
associated with the approximation of functions 
of a large number of input variables. How well 
observations data fill the input space decreases 
exponentially with the input dimension. Hence it 
is necessary to further restrict the function class 
if approximations with reasonable accuracy are 
to be obtained for large input dimension and 
moderate sample sizes. This topic is given special 
attention in Section 3. Neural network, wavelets 
and other methods are discussed from this 
perspective. 

The estimation problem is treated in Sections 
4-8. First, in Section 4, performance criteria are 
introduced; note that new tools are required, 
since concepts such as Cramer-Rao bounds and 
the Fisher information matrix are not appropri- 
ate for non-parametric estimation. Section 5 
discusses the estimation of uniformly smooth 
functions. Classical techniques such as kernel, 
piecewise-polynomial and projection estimates 
are reviewed. Techniques to estimate non- 
uniformly smooth functions are dealt with in 
Section 6 while estimation of highly multivariate 
functions is considered in Section 8. Finally, as a 
conclusion, the gap between theory and every- 
day practice is discussed in Section 9. 

2. APPROXIMATION IN FUNCTION SPACES 

As we have seen in Section 1, because of the 
bias/variance trade-off, the number of para- 
meters used in the expression of the regression 
function for estimation has to be kept as small as 
possible. Thus approximation methods perform- 
ing good approximation with few parameters will 
be preferred. Not surprisingly, the approxima- 
tion method should be selected according to the 
prior assumptions on the function class. 

From an application point of view, these 

classes can be categorized as being either classes 
of uniformly smooth functions or classes of 
locally spiky and jumpy functions. Many real-life 
nonlinear systems are smooth with sparse 
singularities, e.g. mechanical systems and chemi- 
cal systems. Thus classes of locally spiky and 
jumpy functions are important in practice. A 
basic problem is that one typically does not 
know which function class the unknown function 
belongs to. However, as we shall see, it is 
possible to come up with one single approxima- 
tion scheme that has good approximation 
properties for a wide family of function classes 
covering both uniformly smooth classes and 
locally spiky and jumpy classes. In the sequel we 
move progressively from simple to rather 
complex approximation problems. 

2.1. Linear approximation schemes 
We mean here approximation schemes that 

are linear in ft i.e. satisfy (f + g)n = fn + g, if fn 
denotes the nth-order approximant of 6 Typical 
examples are of the following form. We have 
some function space 3 and an increasing family 
of (closed) subspaces %n converging to 9. Then 
we consider some norm II.11 on 9. The nth-order 
projection approximation of f E 9 is the fn E 4 
minimizing the distance off to the subspace sn. 
We call this type of approximations the 
projection approximants. 

While such projections do not need to be 
associated with Hilbert-space structures, the 
problem of determining an optimal approxima- 
tion becomes particularly simple when the 
functional space is a Hilbert space. In that case, 
the best approximant is obtained by simple 
orthogonal projection of f onto some subspace. 
The following result can be obtained (cf. Pinkus, 
1985). 

Proposition 1. (Optimal approximants in Hilbert 
spaces.) Let (gk}z=, be an orthonormal basis for 
a Hilbert space X. Let {~k}~=I be a sequence of 
non-increasing positive numbers. Consider the 
function class 

$= 2 c*g,:g .k251 . 

1 II I 
w9 

k=l k=l pk 

Then for any f E X, and fn = E/n=0 cjgj, we have 

Comments. 

1. The convergence rate in Proposition 1 in 
some sense cannot be improved: there are 
‘bad’ functions in the space X that lie at a 
distance EL,, + , from any n-dimensional linear 
subspace. 
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2. 

3. 

If p,,=l, II = 1,2,. . . , then B= X, and 
Proposition 1 states that the worst-case 
approximation error will not decrease when II 
is increased! Indeed, in this case the 
corresponding ‘bad’ function can be easily 
constructed: we can take simply f = gntl-- 
such a situation occurs for instance if we take 
s = 0 in the example below. This cannot 
happen, however, when the coefficients pi 
vanish at a fixed rate as i+ ~0, i.e. when 9 is 
compact in X. 

The optimal approximation f,,+, can be 
computed recursively from fn. 

As an application of Proposition 1, consider 
the following class of functions. Let w/“,(L) be 
the set of l-periodic functions f(x) defined by 
their Fourier series 

ftx) = ,: cjcpjtx)~ (11) 

where (P&X) = fi sin (21&x) and (PD +1(x> = 
V5 cos (2zkx), k = 1, . 
coefficients satisfy 

r 

C Icj12 t1 
j=l 

For this class of 
approximant is given 

. . > and where the Fourier 

+ Ii])“) < L2. (12) 

functions, the optimal 
by fn = ~~=o Cjqj and the 

rate of convergence is II-‘. Note that “w”,(L) is a 
smoothness class. In fact, (15) is one of the 
several equivalent definitions of the Sobolev 
class V*(L), a particular case of the classes 
W”,(L), p 2 0, which can be defined, for instance 
for s < 1, as the subset of the functions f E L1 
such that 

(13) 

As we have seen in Proposition 1, the best 
approximation of functions belonging to w”,, 
when the error is measured in L2 norm, is simply 
an orthogonal projection on some linear 
subspace. This is not true for other Sobolev 
classes. It can be shown that for the class %$ 
with p < 2, the optimal projection on a subspace 
of dimension it converges to f with the rate 
Cs’ld, where s’ = s - l/p + 4. We shall see, 
however, that there are different approxima- 
tions, which exhibit a better convergence rate 
equal to n -‘ld. The difference between these two 
rates becomes significant for small p. 

From the mathematical point of view, the 
problem can be explained as follows: the 
Sobolev classes %$(L) with s - l/p + i > 0 are 
compact subsets of L2. For p 2 2, these subsets 

are convex. In contrast, when p < 2, these classes 
are not convex, and can hardly be approximated 
using linear (and thus convex) subspaces. 

From the user’s point of view, the functions 
from the Sobolev classes “UF, with small p are 
essentially classes of functions with sparse 
singularities, or classes with spatially (‘non- 
uniform’ smoothness. Hence, if linear ap- 
proximation schemes are used, the approxima- 
tion rate for locally spiky and jumpy functions 
will be slower than for uniformly smooth 
functions. 
Discussion. Roughly speaking, linear ap- 
proximation schemes use subspaces (or basis 
functions) for approximation, which are inde- 
pendent of the particular function to be 
approximated. Thus the question arises as to 
whether one could not do better by selecting the 
basis functions adaptively, i.e. depending on the 
function to be approximated. To illustrate this 
point, consider the function f(x) = l~05X+,) for 
some 0 < a < 1. The Fourier coefficients of this 
function are 

cg = 0, 

sin* (nka) 
C2k = ti Irk , 

C2k+l 

= ti sin (7rka) cos (7rka) 

rk 

From Proposition 1, we know that this function 
belongs to the subset 9 of L*[O, l] that consists 
of the functions such that the coefficients I_L& in 
the decomposition (10) decrease slower than 
k-l’*. This would provide a convergence rate not 
better than n-l’* for the orthogonal projection 
using II basis functions. However, one would 
naturally expect to be able to design a procedure 
that focuses on detecting the edges of f, thus 
exhibiting a much better convergence rate. We 
shall see that such methods cannot be linear 
schemes but must be spatially adaptive, i.e. the 
basis functions must be able to adapt to the 
function to be approximated. Spatial adaptation 
is our next important topic. But first we 
introduce some suitable functional classes. 

2.2. Besov spaces and classes of locally spiky and 
jumpy functions 

A suitable family of spaces to deal with 
functions that are locally spiky and jumpy is that 
of the Besov spaces. This is a family of 
functional spaces indexes with three parameters 
(in the way in which the family of Sobolev spaces 
Wi is indexed with two parameters p and s). The 
interplay of these three indices gives to this 
family of spaces a great flexibility. For instance, 
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for different combinations of the indices, we can 
obtain spaces of (‘uniformly’ regular (or smooth) 
functions, as well as spaces of regular functions 
with sparse singularities. However, all Besov 
spaces possess the following important property 
(wavelets and wavelet expansions will be 
introduced later): 

l norms in these spaces are easily evaluated 
using coefficients of the wavelet expansions of 
the functions of these spaces. 

Let us move now on stating precise definitions. 
For the sake of clarity, we consider only 
compactly supported? functions f: supp f E 
[0, lid, though all the definitions below can be 
generalized for non-compact and multidimen- 
sional cases (we recommend Triebel, (1983, 
1993) as extremely complete presentations of the 
current state of the art in the theory of function 
spaces). 

For f E L, and M E N, we define the local 
oscillation of order M and radius t at the point 

x E [O, 11 by 

0s~~ f(x, t) 4 inpf : 
I 

V(Y) - P(Y )I dy, (14) 
Ix-Yl<r 

where the infimum is taken over all polynomials 
P of degree less than or equal to M. This 
quantity measures the quality of the local fit off 
by polynomials on balls of radius t. Select 
p,q >O, s >d(p-’ - l), and take M = LsJ.+ The 
set of functions 

+ (,$, PSI1 wwf(~7 2-‘)ll,,)q)“q < 4 (15) 

(with the usual modification for p or q = ccl) is 
identical to the Besov spaces of functions 
(Besov, 1959), and it is shown in Triebel (1983) 

that II.11 %;, is equivalent to the classical Besov 
norm. 

Comments. 

1. The triple parameterization using s, p and q 
provides a very accurate characterization of 
smoothness properties. As is usual for Hijlder 
or Sobolev spaces, the index s indicates how 
many derivatives are smooth. Then, for larger 
p, llfll q, is more sensitive to details. Finally, 
the index q has no useful practical interpreta- 
tion, but it is a convenient instrument that 
serves to compare Besov spaces with the 

t supp f will be used to denote the support of h i.e. the set 
where f is non-vaniishing. 

$ Recall that Is] denotes the largest integer 5s. 

2. 

more usual Sobolev spaces %fL, as indicated 
next. It is interesting to notice that the 
indicator functions of intervals belong to the 
spaces 53-1~ for all s > 0; this illustrates our 
claim in the title of this subsection. 

It can be shown that (cf. Triebel, 1983) for 
s10, asp, q’m, 

the family of Besov spaces includes some 
more classical spaces, for s non-integer, 
Hijlder classes %‘” = @;, and Sobolev 
spaces w’; = 6?&; 

%~,c%$,, ifp’>p, q’zq, s’ss-d/p+ 
d/p (with strict inequality if p = w); 

ZgqEL,Mgq~, where q =2r\p and q’= 

2vp; 

In particular, if s > d/p then gjq c %‘. 
2.2.1. Spline approximations in Besov spaces. 

We consider the d-dimensional case and 
suppf c [0, 11”. Free knots spline approximations 
have been analyzed in Petrushev and Popov 
(1987, Theorems 7.3 and 7.4) using Besov 
spaces. Recall that a function fn is called a spline 
function on [0, l] of order k with n knots if 
fn E Yk-* and there exist points (knots) 0 = x0 < 
X1 5x25.. .4x,-, Ix, = 1 such that fn is an 
algebraic polynomial of degree k - 1 in each 
interval (x,_, , xi). Therefore a spline is a smooth 
piecewise-polynomial function. Free knot spline 
approximants are not linear schemes. The 
following result shows that any function from a 
Besov space can be nicely approximated by 
splines. More surprisingly, any function that 
have a good spline approximant belongs to a 
certain Besov space. 

We first state the so-called Jackson inequality 
for spline approximations. Consider f E 5%‘iq, p, 
q > 0. Then there exists a spline function with n 
free knots fn such that the following bound holds: 

llfn -f IllA 5 C(s, P, sF” Ilf ll4_, (16) 
where u satisfies s - l/p + l/u > 0. The converse 
bound is provided by the Bernstein inequality: 
For any f E L,,, s - l/p + l/u = 0, u < ~0, 

where the infimum ranges over the set of spline 
functions fn of order k 2s + 2 with n free knots. 
A similar result holds in the multidimensional 
case and for nth-order rational fraction 
approximations; see Theorems 7.3 and 8.3 in 
Petrushev and Popov (1987). 
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In contrast, approximations using fixed linear 
subspaces perform poorly in Besov spaces. 
Consider some increasing family (&) of 
n-dimensional linear subspaces of L,,, u >p. Let 
fn denote the linear projection of f E Pi& on 3, 
using the L,, norm. Then for any such family 
(Z,,), there exists a least-favorable f such that 
the following lower bound holds: 

Ilf -fn 111( 2 Cn-“’ Ilfll~8:;,,t (17) 

where s’ = s - l/p + l/u. Note that the Sobolev 
injections stated at the end of Section 2.2 imply 
that the same bounds hold for Sobolev classes 
W”,. 

Consider again the example of the indicator 
function f(x) = ltOsx++ It can be easjly verified 
that f E PZ& for any s > 0. On the one hand, it 
follows from (16) that f can be approximated 
using splines with n knots with asymptotic L2 
error o(n-‘) for any f< 00 as n-+ ~0. On the 
other hand, by (17), linear approximations of the 
same function have an L2 error O(n-“‘), where 
n is the dimension of the linear subspace. This 
remark would make rational approximations or 
splines with free knots very attractive for 
approximation in Besov spaces. Unfortunately, 
in the above result only the existence of such 
approximations is stated, and they are very hard 
to compute, for example the optimal positioning 
of the knots of the spline approximation is very 
hard to find. It is amazing that wauelet 
approximations are as good as spline ones, but 
are much more easily constructed. We discuss this 
next. 

2.2.2. Wavelet approximations in Besou 
spaces. The original objective of the theory of 
wavelets is to construct orthogonal bases of 
L&R) of the form (#(2’x - k))j,k, i.e. the bases 
that are constituted by translations and dilations 
of the same function $. It is preferable to take (cr 
localized and regular. We refer the reader to 
Sjiiberg et al. (1995) for the attractive 
computational features of orthonormal wavelet 
bases, and we concentrate here on the properties 
that are useful to understand how they perform 
for function approximation. 

The principle of wauelet construction. This is the 
following: first construct a function cp E L&R) 
such that 

(Sl) the functions cp(x - k) are mutually orthog- 
onal for k ranging over Z; 

(S2) cp is a scale function, i.e. there is a sequence 
hk E l2 such that 

cp(x) = ~‘2 c hk&r -k); (IS) 

this is an important step, several constructions of 
cp have been proposed (cf. Daubechies, 1992). 
Next we define the wauefet 

Q(x) = ti ,c, (- l)khk (p(2X - k). (19) 

It can be shown that the family {$(2jx -k), 
j E N, k E Z} constitutes an orthonormal basis of 
L2(R). The crux in proving this property is to 
verify that, for any jO, the family ((p(2j”x - k), 
@(2jx - k), k E Z, j 1 j,,} also forms an orthogo- 
nal basis of L&R); this is achieved mainly by 
using the algebraic properties (Sl), (S2) and 
(19). If q and 4 are compactly supported, they 
give us a local description, at different scales j, of 
the considered function: 

f(x) = ,Tz (f, (PjlJck)(pj,k(x) + 2 (f, @jk)$jk(X), 
j?j,,.k tH 

where (Pjk(X) = cp(2jx - k), and (*, *) denotes the 
inner product in L*. 

In what follows we assume that cp is a 
compactly supported piecewise-continuous scale 
function satisfying the condition 

3r > 0 s.t. rp E %r,,, (20) 

and we move to the multidimensional case. 
Starting from vj one can construct the corres- 
ponding orthonormal basis of L2(Rd), i.e. the 
functions Q>, !I’(‘), i = 1, . . . , 2” - 1, such that for 
any f E LZ(Rd), we have the formal expansion 

(21) 

Here 

{aok, Y$‘}, 0 5 j < m,k E Z”,l 5 15 2” - 1, 

is the corresponding orthonormal basis, formed 
by dilations and multidimensional translations of 
@ and Y(I). For details of definitions, the reader 
is again referred to Sjoberg et al. (1995). 

Wavelet approximations. We first state a result 
(Jaffard and Laurentcot, 1992; Meyer, 1990) 
concerning functions that satisfy H4older-type 
,,concerning functions that satisfy Holder-type 
conditions. Recall that a function f is called 
Holder-continuous with exponent s at point x0, 
written f E %$, if there is a polynomial p of 
degree at most LsJ such that 

If(x) - P(x - x0)1 5 c Ix - x& 
If f is Holder-continuous with exponent s < r (r 
is the regularity of cp at x0, see (20)) then there 
exists C < m such that, for any integer j > 0, 

max 
{k:x,,ES~Pr’r’,:k} 

(f Yjk) 5 C2-+ +d’2). (22) 
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Conversely, if (22) holds and f is known to be 
%?& for some E > 0, then 

If(x) - P(x - %)I 5 C Ix - xolS log & . 
This result states that local smoothness of 
Holder type can be characterized by the 
vanishing rate of the wavelet coefficients in the 
neighborhood of this point. This property is 
specific to the wavelet transform, and does not 
hold for other orthogonal bases. As we shall see, 
a similar property holds in Besov spaces. We 
have the following result (cf. Theorem 4 in 
Sickel, 1990). 

Theorem 1. (Besou norms and wavelet 
decompositions.) Let r > s > d(l/u - 1) and let 
cp be a scale function satisfying (20). For any 
f E S&, define 

( 
cc 

+ C [p+d/2-d@) 

j=O 
II Pj llp19)“q (23) 

and lpjllp = (&k I/3#“)““; see (21) for the 
definition of the coefficients ffk = (YOk and #. 
Then (23) is equivalent to the norm of the Besov 

space gP9, i.e. there exist constants C, and C2, 
independent off, such that 

C1 Ilf II%p Ilf Ilspq( G Ilf IIs3;<,. (24) 

Theorem 1 states that norms in Besov spaces are 
suitably evaluated using orthonormal wavelet 
decompositions. This fact can be used to obtain 
very efficient approximations. 

We now indicate how such a wavelet 
approximation off can be constructed. Consider 
the full wavelent decomposition off: 

1. 

2. 

3. 

ktH j=O ksh” /=I 

Keep the projection of f on the subspace V,, 
this corresponds to the leftmost sum in (25). 
When f and @ are both compactly supported, 
this requires computing only a fixed amount 
of coefficients, say m. 

Select in the second (triple) sum those 
coefficients PA, A = (i, j, k), with largest 
absolute value, denote by A the set of the 
n - m so selected wavelet coefficients. 

Add n -m detail terms phYh to the sum 
taken in step 1. 

This procedure yields the approximation 

wn(x> = 2 aOk@Ok@) 

L 

m coeffs z 0 

(f,@ compact supp.) 

keep the largest n - m coeffs 

and the following theorem provides the corres- 
ponding approximation bounds. 

Theorem 2. (Jawerth et al. (1993)) Consider 
f E.CZ&, s,p>O and s-dlp+dlurO. Let w, 
denote the approximation (26) of f If the scale 
function satisfies (20) then 

Ilf - wnllu 5 C(h P)n-“‘d Ilf Ils9;n (27) 

holds. If, in addition, u satisfies s - d/p + d/u = 
0, Ll <co, and it is known a priori that f E L,, 
then the following converse bound holds: 

Ilf II%&,~ C(s, P, q)U + nsld Ilf - WZIILJ 

Comments. This result is quite remarkable for 
the following reasons. 

This approximation procedure gives the same 
rate of approximation for a wide variety of 
different Besov spaces (those satisfying 
s - d/p + d/u 2 0). Especially, it is not 
necessary to know a priori the extent of 
localized singularities, i.e. index p. 

When certain norms are used to measure the 
approximation error, and for functions with 
localized singularities, the approximation 
error tends to zero much faster if (26) is used 
than if linear approximation is performed. 
This follows by comparing (27) with the rate 
n -s+dlp-dlu that is generic for linear ap- 
proximations for the cases where 0 <p 5 u. 

Also, in the wavelet decomposition of a function 
with sparse singularities (e.g. f E Sp9, p < 2), 
only a small number of basis functions are 
important, and the other can be neglected. In 
contrast to spaces of uniformly smooth functions, 
it is not necessarily the first basis functions that 
should be used. Let us go back once more to our 
example f(x) = llosX<oP Consider the wavelet 
decomposition of this function using a compactly 
supported wavelet I,@) such that .f e(x) dx = 0. 
It is evident that the coefficient pjk vanishes for 
any wavelet qjk(x) that does not cross the (local) 
singularities of t Thus if we consider the 
projection of f on the subspace y:, only O(i) 
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coefficients of the decomposition significantly 
differ from zero (among 2j candidates). 

3. APPROXIMATION IN HIGH-DIMENSIONAL 
SPACES 

3.1. The curse of dimensionality 
The accuracy of an approximation depends on 

how densely observation points fill the input 
space. Thus having enough data points for good 
estimation would require the sample size to grow 
exponentially with the input dimension. This is 
referred to as the curse of dimensionality, a 
phrase coined by Bellman (1966). The curse of 
dimensionality is exhibited explicitly in the 
results (16) and (27) where the rate of 
convergence has order nP’d. For large input 
dimension d, this is exceedingly slow. 

3.2. Function classes of lower effective dimension 
There are basically two ways to deal with the 

curse of dimensionality: either to accept that a 
huge amount of data is necessary or to restrict 
the function class further. The latter means that, 
instead of having the dimension visible in the 
convergence rate, it will be hidden behind the 
function class. Kolmogorov (1957) proved that 
every continuous function on [0, lid can be 
represented as the additive superposition of 
continuous one-dimensional functions. Lorentz 
(1976) gave an explicit scheme: every continuous 
function f on [0, lid can be written as 

f(x,,..., Xd) = z’ gj [g, hjk(Xk)] (28) 

for some continuous univariate functions (8,). 
Moreover, the functions (hjk) can be taken to be 
universal, i.e. they do not depend on J: 
Unfortunately, these results are not of great help 
for approximation, since the above functions g, 
are usually extremely irregular even for a 
smooth f function.? 

However, one way to bound the function class 
in its ‘effective dimension’ is suggested by the 
generic decomposition (28). Introduce the 
variables Zj L z;f=, hjk(xk), which, since the hjk 
are known, can be precomputed. The function f 
can then be written as 

2d+l 

fb,..., x~I) = C gj(Zj), (29) 
,=I 

and the problem is to approximate 2d + 1 
univariate functions gj. Using m basis functions 
to approximate each gj gives an approximation 
error of order m -’ under the usual smoothness 

t This was already noted in the original paper by 
Kolmogorov (1957). 

assumptions on g (cf. Section 2). Taking 
m = n/(2d + l), the total number of basis 
functions is n and the total approximation error 
will be of order (2d + l)[n/(2d + l)]-” which, for 
large n, is of order n -’ and is much better than 
the above quoted nps’d. 

Projection onto one-dimensional subspaces is 
the crux of the projection pursuit algorithm, 
developed in Friedman and Stuetzle (1981) (a 
very good review of these results can be found in 
Huber, 198.5) which consider estimates of f in 
the form 

where (aj) are unit vectors and each (Y~X may be 
thought of as a projection of x. The jth term Sj(*) 
is constant along a:x = c, and so is often called a 
ridge function; the estimate at a given point can 
be thought of as based on the averages over 
certain (in general adaptively chosen) strips 
{x : Iayx - til 5 E}. Other examples are recursiue 
partitioning (Morgan and Sonquist, 1963; Bre- 
iman et af., 1984) and related methods (cf. e.g. 
Friedman (1991) and the discussion therein. 
These methods are derived from some mixture 
of statistic and heuristic arguments, and give 
impressive results in simulations. Their drawback 
lies in the almost total absence of any theoretical 
results on their convergence rates. We refer the 
reader to the above references for additional 
information. 

3.3. Neural networks 
For a review of neural networks see the 

companion paper by Sjoberg et al. (1995). The 
following result was recently published in Barron 
1993)-it is the most accurate theoretical result 
on the neural network-based approximations 
today. Let V(X) be a sigmoidal function (i.e. a 
bounded measurable function on the real line for 
which a(x)+ 1 as x + ~0 and a(x)+ 0 as 
x + -m). Consider a compactly supported 
function f with supp (f) E [0, l]“, and assume 
that 

C, = iw’, 101 l&4 do < ~2 I (30) 

where p(w) denotes the Fourier transform of & 
The main result of Barron (1993) can be roughly 
stated as follows: there exists an approximation 
fn of the compactly supported function f, of the 
form 

n 
fn(x) = C c,a(aTx + ti) + c0 

1=l 
(31) 

(note that fn is not compactly supported), such 
that 

(32) 
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This result provides an upper bound of the 
minimum distance (in L2 norm) between any f 
satisfying condition (30) and the class of all 
neural networks of size not larger than n. In the 
same article, the upper bound (32) is compared 
with the best achievable convergence rate for 
any linear approximation in class (30). It is 
shown that a lower rate for linear projections is 
n -‘ld; compare this with the much better rate 
n -1’2 for neural networks, especially for large 
dimension d. 

Comment. It is not easy to relate the function 
class defined by the condition (30) and more 
usual smoothness classes. For instance, one can 
show that if f E W (dt’)‘2tE(L) for some E > 0 and 
L < 00, then (30) holds. Note that that the same 
rate was obtained for ‘linear’ projection es- 
timators in Section 2.1. On the other hand, it can 
be shown that, even in the Sobolev class 
W(d+‘)‘2, there are ‘bad’ functions, which does 
not verify (30). 

This gives us an idea that the neural 
approximator outperform usual linear estimators 
on some special rather restricted functional 
classes. What are these classes? Barron (1993) 
lists some classes. In particular, if f(x) = g(x’a) 
for some a E Rd, Ial = 1, i.e. f(x) is a ridge 
function, then the Fourier transform f(w) is 
concentrated in the direction of a, and (30) 
implies that S 1~1 g(o) dw < a~. 

It is much easier, however to determine the 
classes on which neural nets behaves badly. 
Consider a class of function that are spherically 
symmetric, i.e. f(x) = g&l) for some g: lR+ R. 
Using spherical coordinates (p, Y) (with p = 1x1, 
Y is a vector on the unit sphere and p is the 
radius), we get from (30) 

lR,, I4 f WI dw = j-= P IS( dp I$l (33) 
0 

where ISPI is the surface of the d-dimensional 
sphere of radius p, which is 

s, =p 
d-l Kd12d 

T(;d + 1) ’ 

where I’(*) is the standard gamma function. We 
conclude from (30) and (33) that g(*) should 
satisfy 

This is a hard assumption, and it implies that the 
dth derivative of g is bounded. We know (cf. 
Section 2.2) that for such functions the rate n-’ 
can be attained by spline or wavelet approxima- 
tions (and many other classical methods). The 

rate n-l’* stated in (32) for neuron approxima- 
tions is really not good in this case. These two 
examples illustrates the following simple idea: 
the neural nets are not always good ap- 
proximants. They behave badly on certain 
functional classes and outperform local es- 
timators in some particular situations. This 
duality between local and ‘semilocal’ methods 
has been discussed and developed in Donoho 
and Johnstone (1989). 

When coming back to Barron’s result, it 
should be noted that no result is available that 
takes advantage of possible improved smooth- 
ness of the unknown function 5 An iterative 
algorithm for the construction of the approxima- 
tion (31) is also proposed. The true problem of 
system identification, i.e. that of neural network 
training based on noisy input/output data, is not 
addressed in this paper. 

3.4. Wavelets 
Note that in the orthonormal wavelet 

expansion 

the dilation and translation parameters 2-“j and 
k do not depend on the function to be expanded; 
only the linear weights ffjk and p$) depend on 5 
Suppose that we are able to construct an 
‘adaptive wavelet basis’, i.e. with dilations and 
translations depending on the function 5 The 
wavelet expansion of f using these basis 
functions is expected to use fewer wavelets, and 
thus we expect it to be more convenient for 
estimation purposes. To obtain such a basis, we 
can discretize the continuous wave/et transform 
(36), which is given by the following theorem. 

Theorem 3. Let (cr and q be radial? functions 
satisfying 

I 

?c 
a-‘+(aw)$(ao) da = 1 VW E R”, (34) 

0 

where we recall that d(w) denotes the Fourier 
transform of the function q(x). Then for any 
function f E L2(Rd), the following formulae 
define an isometry between L2(RD) and a 
subspace of L,(Iw” x IB,) (Daubechies 1992): 

u(a, t) = ad-“* 
I 

f (x)cp(a(x - t))ldx, (35) 

f(x) = 1 u(a, t)$(a(x - t))a”-“* da dt, (36) 

t A function cp is radial if q(x) depends only on WI; this 
implies that g(w) also depends only on IwI. 



Nonlinear black-box models in system identification 1735 

where a E II-V and t E R’ are the dilation and 
translation factors respectively. 

We present the following algorithm proposed 
in Delyon et al. (1995). Consider the continuous 
wavelet transform (36), which we rewrite as 

f(x) = 1 ~(a, t)+(a(x - ~))a”-“* da dt 

= 
I 

+(a@ - t)) sign [~(a, C)]U(“~‘)‘~ 

x ]~(a, t)l da dt 

= $ 
I 

$(a(~ - t)) sign [~(a, t)] w(u, t) da dt, 

where we have renormalized ~(a, t) by a 
constant factor C so that the function w(u, t) = 
cu(“-‘)‘2 ]u(u, t)] can be considered as a prob- 
ability density. Then we draw n independent 
random samples (ai, ti);=,,.,.,n from a distribution 
with density w(u, t). Then we construct 

fn(X) = i ,g &2~(&(x - [iI) sign [UC%, h>l, (37) 

which, thanks to the law of large numbers, 
converges to the true wavelet transform. Some 
faster implementations of this algorithm are 
given in Delyon et al. (1995). Improving this 
estimate by some ‘bootstrapping’-like technique 
yields the following approximation result. 

Theorem 4. (Delyon et al. (1995).) Let Cc, be any 
radial wavelet function such that there exists a 
related radial function cp that satisfies (34). Let p, 
p, 1 and s be real numbers satisfying 

l<,<(l-?)-I, 

11 
P=min l--,- 

i 1 P2 

and let f be a function from the Sobolev space 
W;(lRd); then, for any n > 0, there exists a 
function fn of the form 

fn(x) = ,$ ui+(“i(x - li)) (38) 

such that 

Il.6 -fllwp cc’” Ilfllw,. 

In particular, if s > id then 

IIL -RI2 5 n-‘“C Ilfllw-l. (39) 

Comment. Theorem 4 provides us with an upper 
bound for the rate of approximation when 
adaptive dilation/translation sampling is used to 
discretize the continuous wavelet transform. We 
should compare this rate with rates of conver- 

gence for approximations based on fixed 
dilation/translation sampling. For those ap- 
proximations, the best rate which can be attained 
for p = 2 and s - id = E > 0, would n-‘ld, which 
is much slower than the rate (39). 

Note also that in this case the rate of 
convergence for the ‘shrunk’ wavelet ap- 
proximants is also K”~~‘. Thus these two types 
of nonlinear approximations have almost the 
same rate of convergence. 

3.5. Breimun’s hinging hyperplunes 
We now briefly discuss a recent technique due 

to Breiman (1993), which practically combines 
some advantages of neural networks (in 
particular the ability to handle very large 
dimensional inputs) and of constructive wavelet- 
based estimators (availability of fast training 
algorithms). Breiman’s technique is an elegant 
way of identifying piecewise linear models based 
on data collected from an unknown nonlinear 
system; see Sontag (1981) for the use of such 
models in control. Following Breiman (1993), we 
call a hinge function a function y = h(x), x E R”, 
that consists of two hyperplanes continuously 
joined together, i.e. an open book. If the two 
hyperplanes are given as 

Y=@+?x)+Po+, y=W,x>+P,, 

where (0, *) denotes the scalar product in a 
Euclidean space, then an explicit form for the 
hinge function is either 

h(x) = max UP+, x) + PO’, (P-, x) + Pi) 

or 

h(x) = min ((P’, x> + P,‘, (P-, X> + pi). 

It is proved in Breiman (1993) using the 
methods of Barron (1993), that there is a 
constant C such that for any n there are hinge 
functions h,, . . . , h, such that 

for any f such that 

i 
Id* IfW dw < a, (41) 

IW* 

i.e. Breiman’s hinge model is as efficient as 
neural networks for the L2 norm. Note that, as in 
the neural network case, the condition (41) limits 
the function class by reducing the effective 
dimension, cf. the comment after (32). However, 
as indicated at the beginning of this section, no 
convergence rate is given for models identified 
from noisy data (the bound (40) is not a 
convergence rate for identification, but only a 
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rate of approximation of a given function by 
some finitely parameterized class of ap- 
proximants). Further details are given in the 
companion paper (Sjoberg et al., 1995) concern- 
ing effective procedures for hinging hyperplanes 
estimation; we shall not discuss them any 
further. 

4. PERFORMANCE MEASURES FOR NON- 
PARAMETRIC ESTIMATORS 

With the approximation results from the 
previous sections at hand, we are now ready to 
move on to analyze the behavior of estimation 
algorithms from noisy data. The performance 
analysis of non-parametric estimation algorithms 
and/or identification procedures is much more 
difficult than for parametric estimation. The 
following specific issues are important: 

What play the roles of the Cramer-Rao 
bound and the Fisher information matrix in 
our case? Recall that the Cramer-Rao bound 
reveals the best performance one can expect 
in identifying the unknown parameter 8 from 
sample data arising from some parameterized 
distribution pe, 8 E 0, where 0 is the domain 
over which the unknown parameter 8 ranges. 
In the non-parametric case, lower bounds for 
the best achievable performance are provided 
by minimax risk functions. We shall introduce 
these lower bounds and discuss associated 
notions of optimality. 

For lower bounds, what is the class of systems 
on which best achievable performance is 
considered is another important issue. For 
non-parametric representations of linear 
systems, L2, L,, H2 and H,, with their 
associated norms, are typical spaces to work 
with. For (even static) nonlinear systems, 
however, the choice is much wider. How wide 
should be the class 5 of systems under 
consideration, and what kind of smoothness 
should be required? Are we interested in the 
behavior of the estimate at one particular 
point x of interest, or in the global behavior 
of the estimate? Different distance measures 
should be used in these two different cases. 

4.1. Lower bounds for best achievable 
performance 

In order to compare different non-parametric 
estimators, it is necessary to introduce suitable 
figures of merit. It seems reasonable first to build 
on the mean-square deviation (or mean absolute 
deviation) of some seminormt of the error; we 

t A seminorm is a north, except that it does not satisfy the 
condition that llfll = 0 implies f = 0. 

denote it by llfN -f 11. The following seminorms 
are commonly used in non-parametric regres- 
sion: llfll = [S f”(x) dx]‘“, 0 <p < 00, L, norm), 
11 f II = sup, If (x)1 (uniform norm, % or L, norm), 
and I( f /I = If (x0)1 (absolute value at a fixed point 
x0). Then we consider the risk function 

RJ&,f) = E[aG’ IIP -f 1112, (42) 

where aN is a normalizing positive sequence. 
letting aN decrease as fast as possible so that the 
risk still remains bounded yields a notion of a 
convergence rate. Let 9 be a set of functions 
that contains the ‘true’ regression function f; 
then the maximal risk raNQN) of estimator & on 
9 is defined as follows: 

If the maximal risk is used as a figure of merit, 
the optimal estimator pg is the one for which the 
maximal risk is minimized, i.e. such that$ 

We call 75 the minimax estimator and the value 

the minimax risk on 9. Notice that this concept 
is consistent with the minimax concept used in 
the definition of n-widths in approxiamtion 
theory in Section 2. 

The construction of minimax non-parametric 
regression estimators for different sets B is a 
hard problem. Presently, it has only been solved 
asymptotically (for large samples) for some 
special cases (see e.g. Efroimovich and Pinsker, 
1982, 1983, 1984). However, letting aN decrease 
as fast as possible so that the minimax risk still 
remains bounded yields a notion of a best 
achievable convergence rate, similar to that of 
parametric estimation. More precisely, we state 
the following definition. 

Definition 1. (Lower rate and minimax rate of 
convergence.) 

1. The positive sequence aN is a lower rate of 
convergence for the set 9 in the seminorm II * II 
if 

lim inf r,,(J$) = lim inf inf sup 
N-X N-z fN feS 

x E[ai’ IlfN -f 111 g c0 (43a) 

$ To properly understand the statement to follow, the 
reader should note the definition (2) of an estimator. 
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for some positive Co. This notion can be 
refined as follows. 

2. The positive sequence uN is called minimax 
rate of convergence for the set 9 in the 
seminorm /*II if it is a lower rate of 
convergence and if, in addition, there exists 
an estimator fg achieving this rate, i.e. such 
that 

lirnn_up r,,(fg) < a. (43b) 

The inequality (43a) is a kind of negative 
statement that says that no estimator of a 
function f can converge to f faster than a,,,. Thus 
a coarser but easier approach consists in 
assessing the estimators by their convergence 
rates. In this setting, by definition, optimal 
estimators reach the lower bound as defined in 
(43a) (recall that the minimax rate is not unique: 
it is defined to within a constant). 

4.2. Some negative results 
From the discussion in Section 1, it should be 

evident that it is the assumed smoothness class 
that dictates the minimax rate of convergence. 
Generally it holds that the larger the class of 
functions, the slower the convergence rate. 
Devroye and Gyorfi (see Devroye, 1982; 
Devroye and Gyorfi, 1985) have proved the 
following result. t Consider the following classes 
of functions on R: 

9* the class of all functions f such that 
f(x)=0 for x>l or x<O, and lf(x)]~~C 
for x E [0, 11; 

% the class of all continuous functions 
f E s*; 

5P CC the class of all functions f E 9* having all 
continuous derivatives on [0, 1) (note that 
the interval is right-open). 

Let fN be an arbitrary estimate off Then for the 
classes 9* @$ and $2 defined above (we 
denote them generically by $), 

for any positive sequence aN + 0. 
Thus no convergence rate exists for any of the 

above classes 9*, 97 and 5% In other words, 
the convergence can be arbitrarily slow, 
depending on the unknown function or density f 
to be estimated! It is a natural consequence of 
the fact that the above classes 9*, 9: and $2 

t Note, however, that convergence can sometimes be 
proved without any smoothness assumption (Devroye and 
Wagner, 1980). 

are too rich: they contain functions that are 
extremely difficult to approximate. In other 
words, in order to obtain any interesting rate of 
convergence, smoothness conditions should be 
imposed. 

4.3. Some positive results 
Let us now concentrate on the case of 

deterministic uniform design, i.e. the input data 
X are uniformly sampled in the considered 
interval. The following result in the case of 
regular design can be attributed to Ibragimov 
and Khasminskij (1981) (for the random design 
case, see Korostelev and Tsybakov, 1981; Stone, 
1982). 

Theorem 5. Let us consider the Holder class 
V(L) on [O,lld, closely related to the Sobolev 
classes. The Holder class W(L) is the family of 
functions f(x), x E [0, lid defined by 

V(L) = {f :f’“‘(x) - fyX’)l 

5 L Ix -Xyk, for any x,x’ E [0, lid}, 

k = td. (44) 
Consider 

llgll =(j-ldxr~)l’p~ O<P<W? 

or lkll = Ik(xo)l. 

Then N-s’@+d) is a lower rate of convergence 
for the class V(L) in the seminorm I]. I]. 
Furthermore, (Nlln N)- s’(a+d) is a lower rate of 
convergence for the class F(L) in the norm 

II4 II = SUPx.[O,l] Ik(X)l. 

Note that to obtain the correct rate of 
convergence for the distance at a fixed point x0, 
the corresponding Lipschitz property is required 
at x0 only. Similar results hold when the case 
V(L) is replaced by the class VP(L), p L 2 (see 
(13)). Then N-s’(2Fcd) is also a lower rate of 
convergence for this class in the L,, norm of the 
error. 

5. ESTIMATION IN CLASSES OF UNIFORMLY 
SMOOTH FUNCTIONS 

Throughout this section, Problem 1 is 
considered. The discussion in Sections 1.2 and 2 
gives the required background for understanding 
how to perform estimation of the unknown 
function fusing a fixed basis function expansion. 
Let us take the Sobolev class W*(L) and our 
model (8), (9). In this case we take the Fourier 
basis as (gj), and to obtain the optimal 
approximation with n basis functions, we can 
simply take first n terms of the expansion (9) or 
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(11). This gives a certain maximal bias error; cf. 
the first term in (10). In this particular example 
this error is of order n-“? The parameters in the 
function expansion (9) are estimated via 
empirical means based on N noisy observations. 
The mean square error of the estimate of each 
coefficient is 0(1/N). Thus the total mean 
square error of the estimate will be, as usual, the 
sum of the stochastic part and the bias due to the 
approximation error: this yields O(n/N) + 
0(ne2”ld). The optimal choice for n balances 
these two terms: II = N1’(Zrtd). This choice for II 
yields a quadratic error of order Np2F’(2r+q). This 
is the typical scheme that is followed even in 
cases where the basis function expansion is not 
as explicit as in this example. 

The estimators we consider in this section are 
linear, i.e. they can be written as 

where recall 

{(Xl, Y,), . . .:“(x,, YN>> 

that B;y= 
is the given random 

sample observation. It is only the weights WN,i(X) 
that may differ from estimator to estimator. This 
means that such an estimator satisfies f + g =f 
+ g; note, however, that the functions f and g, 

and their estimates, are generally nonlinear as 
functions of their input x. Linear estimators 
build the folklore of non-parametric estimation: 
kernel estimators, projections on linear sub- 
spaces of functions, are typical instances we shall 
describe. We shall then discuss, both practically 
and theoretically, some severe practical limita- 
tions of linear estimators. Roughly speaking, 
linear estimators are suitable for systems with 
‘uniform smoothness’; systems with sparse 
singularities (e.g. hard limiters, quantizers and 
some mechanical systems) are poorly handled. 
This follows from the discussion of Section 2.1. 

5.1. Kernel estimators for regression functions 
and densities 

Kernel estimators were first proposed by 
Nadaraya and Watson in 1964 (see Nadaraya, 
1964; Watson, 1969). The Nadaraya-Watson 
kernel estimator is an interpolation procedure. It 
is given by 

N 

ANN = z, YiK(cXi - X)lhN), 

,g, K((X; - X)lhN) 

(46) 

where (hN) is a sequence of positive numbers, 

hN--+ 0 as N -+ 00, and K is a function on R 
satisfying 

lim Ilu II K(u)1 = 0, ,11,+x 

I 

z 
IK(u)l du < m, -r 

;tg IK(u)l< ~0, 
(47) 

I 
z 

K(u) du = 1. 
-r 

The positive number hN is called the bandwidth 
and the function K satisfying (47) is called a 
kernel; in fact, h, is better interpreted as a 
scaling factor. Clearly, the Nadaraya-Watson 
estimator is linear, and has the form (45). 
Typical examples of kernels are K(u) = ~l~,,,~,) 
(rectan ular window kernel) and K(u) = 
(l/ v-g 2@ exp ( - 4 1~1’) (Gaussian kernel). 
Usually K is chosen to be an even function. 

The idea of kernel estimation is simple, let us 
explain it for the case of the rectangular kernel 
in one dimension. In this case the estimator (46) 
is a simple moving average with equal weights: 
the estimate at point x is the average of 
observations x corresponding to XiS belonging 
to the ‘window’ [x - hN, x + hN]. As h,+ 03, the 
estimator tends to N-’ xi x, the average of all 
observations, and thus for functions f that are far 
from being constant, the bias becomes large. If 
hN is very small (say, smaller than the pairwise 
distance between sample points Xi) then the 
estimator reproduces the observations: ?N = x. 
In this extremal case the variance of the error 
becomes high. Thus increasing h,,, tends to 
increase the bias of the estimator, while reducing 
hN leads to a larger variance. The optimal choice 
for hN corresponds to an equal balance between 
bias and variance. 

Also closely related to estimator (46) is the 
Parzen-Rosenblatt kernel estimator for den- 
sities. Let X,, . . . , X, be independent and 
identically distributed random variables with 
common density f(x), x E R”. The Parzen- 
Rosenblatt estimator of density f(x) is a suitably 
smoothed histogram. It is defined as (Rosenglatt, 
1956; Parzen, 1962) 

fNcx> = (48) 

where d is the state-space dimension of X and K 
is a kernel as in (47). The kernel estimate (46) 
can be easily derived from the Parzen- 
Rosenblatt one. Recall the definition (1) of the 
regression function, take the Parzen-Rosenblatt 
estimator (48) for the joint density f(x, y) of 
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(X, Y) and denote it by f&, y). Then replacing 
in the formula 

I Y~(x, Y) dy 

f(x) = 

I f (x, Y) dy 

f(x) and f(x, y) by their corresponding Parzen- 
Rosenblatt estimates yields the kernel estimate 

(46). 
We now state a sample of results about the 

properties of kernel estimates for the d- 
dimensional case when it is known a priori that f 
belongs to the Holder class V(L) (see (44) for 
the definition of V(L)). 

The first two statements of this can be 
attributed to Rosenblatt (1971), though it 
probably belongs to the earlier folklore of 
non-parametric statistics. 

Theorem 6. (Rosenblatt (1971).) Let 7, be a 
kernel estimate with bandwidth hN such that 
h,+O and Nh,,,+m, with kernel K satisfying 
Jx’K(x) dx = 0 for j = 1, . . . , k. Here, xi denotes 
any product of the form x+x$ * . .x2 where 
j,+j2+..*+jrl=j, and x ,,..., xd are the 
coordinates of x. Assume that the observations 
X, are independent and identically distributed on 
[0, lid with density g(x) > c > 0, g E V(L), and 
that the noise satisfies Ee, = 0 and Eef I a: < ~0. 
Then 

Uniformly over f E V(L) and x E [0, l]“, we 
have the pointwise bound 

E &(x) - f(x)l” I C( L*h$ + 2) . (49) 

The optimal value of hN that minimizes the 
right-hand side of (49) is given by 

For this value of h,,,, 

E f,,(x) -f(x)l’s CL2’(d+ZF) . 

If we consider instead the global error 
measure E /If,, - fllz, again using the same 
optimal value (50) for hN yields the same 
bound, uniformly over f E F(L). 

Comments. 

1. As expected from the above informal 
discussion concerning the rectangular kernel, 

2. 

3. 

4. 

the bound for the estimation error variance 
given on the right-hand side of (49) is 
decomposed into bias plus uuriance terms. 
And, as expected, the optimal choice of h, in 
(50) exactly balances these two terms. 

Note that we have both pointwise and global 
bounds, which reflects the local nature of 
kernel estimates. 

The properties of the Parzen-Rosenblatt 
algorithm of density estimation are identical 
when the unknown density f satisfies f E 
V(L). Note that, since suppfs [0, l]“, the 
L2 norm of the error (restricted to [0, 11”) is 
dominated by the L2 norm. So we get from 
the second statement in the theorem 

2 *s/(2,+1) 

E II& -fll;s CL2’(r1+2F) $ 
C 1 

, 

provided that hN is chosen as in (50). 

Often the following recursive version of the 
kernel estimator is considered (Oppenheim 
and Portier, 1990; Duflo, 1993): 

fn<x> = (r,‘(x)[i_ Y,h;“K(~)] 
I 

if I,(x) # 0, 

if I,(x) = 0, 

r,(x) = ,$ h;“K(~) , 
I 

or 

L(X) =_C-,(x) + I;‘(x) 

x (Y,, - K’K(y)i.,_,) > (51) 

T,(x) = T,_,(x) + hjyK 

In this form the algorithm resembles very 
much the recursive least-squares algorithm 
for estimating the parameters of linear 
models. When the bandwidth is such that 
hi = hi-” for some 0 < (Y < 1, the properties 
of the algorithm (51) in the static regression 
problem are essentially the same as those of 
the ‘off-line version’ (46). In Oppenheim and 
Portier (1990), Portier (1992) and Duflo 
(1993) this algorithm was used to identify 
stable non-parametric autoregression models 
of the form (4), and the convergence of this 
estimator was proved. Furthermore, the same 
algorithm was used to provide the estimates 
of f,, in the closed-loop system (5), (6), and 
the stability of such an adaptive control 
scheme was proved-Oppenheim and Portier 
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(1990) and Portier (1992) consider essentially 
the one-dimensional case, and Duflo (1993) 
the general multidimensional case. 

5.2. Piecewise-polynomial estimators 
Another non-parametric regression estimator 

that is commonly used is the piecewise- 
polynomial one. The idea is the same as for the 
kernel estimator, though the averaging is made 
over bias (i.e. small cubes) of fixed size SN rather 
than in an h, neighborhood of the current point 
x. It is also closely related to the radial-basis 
function (RBF) networks with rigid location for 
the radial functions (see Poggio and Girosi, 1990; 
Wahba, 1991). The simplest example of this 
method is the piecewise-constant estimator or 
regressogram. The value of the estimate f, in 
each bin equals the average of observations Y, 
such that the corresponding X, belong to the bin. 
For the sake of clarity, we consider the 
one-dimensional case. 

The piecewise-polynomial estimator can be 
formally defined in terms of the following 
optimization problem. Let a,,, + 0 be a positive 
sequence, and assume that 8,’ = M is an integer. 
Define ul = lSN, I= 0, . . . , M, and divide the 
interval [0, l] into M cubes (bins) of the form 

u1 = 10, u,), IJ, = [u1, u*), . . . > u, = [h-l, 11, 
so each bin has length aN. Set 

r .*2 .,k,T 
F(x)=11 x =-; . . . :I ) 

and, for each bin U,, I = 1, . . . , M, solve for 
8 E Rk+’ in the least-squares sense the system of 
equations 

k; = eTF(xi ---‘-I), X; E U,, (52) 

and denote by b,, the corresponding solution. 
Then the piecewise-polynomial estimate fN of 
order k in each bin U, is expressed as 

fN(X) = e;,,F(xT), x E u,. (53) 
N 

The value aN is called the binwidth. As for the 
bandwidth hN of the kernel estimate, the 
binwidth tunes the smoothness: larger aN leads 
to a higher bias, and smaller 6, results in a 
higher variance. In order for the least-squares 
problem in (53) to be non-degenerate, we 
require that the number of points X, in each bin 
are larger than k + 1. 

Stone (1982) has proved a result similar to 
Theorem 6 for this type of estimate (see (44) for 
the definition of the Holder space V(L)). We 
state this result in the general d-dimensional 
case. Assume that the observations Xi satisfy the 

assumptions of Theorem 6. Let fN be a piecewise 
polynomial estimate of order k =LsJ, with 
binwidth SN -+ 0 and N6,v+ ~0 as N + 03. Then 
statement 1 of Theorem 6 holds with the binwidth 
6, substituted for the bandwidth h,. 

Comments. 

Note that, unlike for kernel estimates, 
piecewise-polynomial estimates compute pro- 
jections on the fixed set of functions 
F((x - u[_1)/6N), x E U, (the Ith bin). The 
same remark holds for the projection 
estimate to follow. 

As can be seen, piecewise-polynomial and 
kernel estimates have the same asymptotic 
accuracy when N+ a. 

If f is a smooth function (i.e. s 2 l), the 
optimal number of bins is ng - S;‘, and is 
much less than the number of observations 

(ns -N”’ for s = 1). This number is equiv- 
alent to the memory size required to 
implement the algorithm: to reconstruct the 
estimate, k = Ls_l coefficients are necessary. 
Thus, if N is large, this algorithm offers 
significant advantage, in terms of memory 
requirements, over kernel estimates, in which 
all measurements should be kept to re- 
construct f(x). Also, computing (52) and (53) 
is of lower computational burden than 
computing (46). These two points make the 
piecewise-polynomial estimate more 
attractive. 

Unfortunately there is no reasonable recur- 
sive version of the estimate fn. Although one 
can use the recursive least-squares algorithm 
to compute linear regression coefficients 8,, 
in (53) the derivations quickly become 
messy, because the number M of bins 
depends on N, and so does the number of 
equations in the algorithm. 

5.3. Projection estimates 
Another class of function estimates was 

introduced by Cencov (1982), who called them 
projection estimates. The idea consists in 
expanding the unknown function into its 
‘empirical’ Fourier series. Consider the Sobolev 
class w”,(L) of functions f(x), (11) but now 
defined for x E [0, 11”. In this case (11) becomes 

f(x) = ,,YE, cjlpj(x)j (54) 

where i = (i,, . . . , jd) is a multi-index, x = 
[x’ . . . X”lT, pi_(X) = p,,(X’) x. . . x cpi,(X")j 1 GE l, 

(P2&)= v5 sin (2xk.x) and %k+l(X) = 
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fi cos (27&x), k = 1, . . . . The condition (12) convergence (up to a constant) as kernel or 

remains the same: piecewise-polynomial ones. 

I 2. The bound (58) for the quadratic error of the 
algorithms appears rather naturally if we 
consider the following argument: when we 
approximate f E W2 using n terms of its 
Fourier decomposition, the approximation 
error is O(m-b’d). Furthermore, the stochas- 
tic error in each term is O(N-‘). This simple 
calculus can be repeated for any non- 
parametric estimate. Obviously, it is beyond 
our possibilities to reduce the stochastic 
component of the error. On the other hand, 
the bias part depends on the method we 
choose to approximate the function 
(piecewise-polynomial, trigonometric series, 
etc.) with, and this choice of approximant is 
of primary importance. 

C ICjl'(l + jjl") < L2. 
j=l 

We assume that the input X is uniformly 
distributed. We construct the estimate fN as 
follows: 

.Mx) = $ c^Ycpi(x), (56) 

where m is the ‘model order’, and the empirical 
estimates c^,F of Fourier coefficients 

(57) 

are substituted for the true ones cj, j = 1, . . . , m. 
Note that the assumption that X is uniformly 
distributed has been used. Note also that the 
estimate (56), (57) is linear (cf. (45)) with 
weights given by 

wN,i(x) = ,$, i cpi(x)cpi(xi)+ 

Cencov (1982) has proved the following 
counterpart of statement 1 of Theorem 6. Let & 
be a projection estimate. Then, uniformly over 
f E “w”,(L) and x E [0, lid, 

E /j?N(x)-f(x)/~~~C(L2m-~+$$). (58) 

The optimal order m of the model is 

m = [($!)‘““‘“‘], (59) 

it balances bias and variance error estimates, and 
yields the bound 

(60) 

The following result, due to Ibragimov and 
Khas’minskij (1981) provides a global uniform 
bound. Take 

m = [(--$)“‘a+d’] 

for the model order (note that this is slightly 
different from (59)). Then, uniformly over 
f E V(L) (the class V(L) is defined in (44)), it 
holds that 

Comments. 

1. Projection estimates have the same rate of 

3. From the computational point of view, 
projection estimates are more attractive than 
piecewise-polynomial estimates, since they 
use an orthonormal basis of functions (the 
Fourier basis), which dramatically simplifies 
the computation of the least-squares estim- 
ates 2, of the Fourier coefficients cj; cf. (57) 
with (52). 

5.4. Selecting model complexity 
As we have seen, the convergence of the 
estimates depends strongly on the choice of the 
bandwidth h, for the kernel estimator, the 
model order m for the projection estimator, and 
the binwidth & (or, equivalently, the ‘model 
order’ M = 6-l) for the piecewise-polynomial 
estimator. These design parameters depend on the 
parameters of the smoothness class V(L) or 

K(L), which are a priori unknown-see 
definition (44) of this class and the use of 
parameters (s, L) in Theorem 6 and correspond- 
ing results for other estimators. Even if some 
information about the smoothness parameter s is 
available, the knowledge of the value L is of 
importance when the data sample is of bounded 
length. Let us illustrate this with the following 
example, where the input x is scalar. Consider 
the problem of estimating a function f(x) in 
additive white noise e, with a: = 1. Assume that 
f has support [0, 11, that all its derivatives are 
continuous, and that f ($) = 1 and f (0) = f (1) = 0. 
Note that in this case typically supx 1 f (“‘(x)1 = ss, 
i.e. higher-order derivatives becomes very large 
in uniform bound. In this case the bounds in 
Theorem 6 are of order aN(s) = (s/N)~‘(~+‘) 
when the parameter is selected for the 
smoothness s. Assume that the size of the 
observation sample is N = 10 000; then a,(2) = 
0.0110 and aN(3) = 0.0095, but we have already 
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a,(4) = 0.0122 (the value of s that minimizes a,,, 
is s = 3.4814, with UN(s) = 0.00946). This illustr- 
ates the fact that the tightest bound is not 
obtained by taking the largest possible s, but 
rather by selecting the most favorable pair (s, L), 
which obviously is much more difficult. 

Given that we only have in practice samples of 
finite size N, we shall not try to estimate the 
most favorable pair (s, L), but we shall proceed 
differently. The model order (or bandwidth, or 
binwidth, depending on the different estimates) 
will be estimated from data using a procedure 
usually referred to as the generalized cross- 
ualidation (GCV) test. GCV procedures were 
studied for kernel (see e.g. Rice, 1984; Hlrdle 
and Marron, 1985), spline (Craven and Wahba, 
1979; Li, 1986) and projection estimates (Li, 
1987; Polyak and Tsybakov, 1990). Let us 
consider, for instance, the procedure for the 
projection estimates.? To make the model order 
explicit in (56), we shall write fm,, instead off,. 
Set Sk,N = N-’ XL, 11 yl: -f,,&Xj)ll*. As for the 
prediction error variance estimate in parametric 
prediction error methods, S’,,, is a biased 
estimate of the error. Thus one cannot minimize 

Z?,N with respect to m directly: the result of 
such a brute force procedure would give a 
function f,,,&) that perfectly fits the noisy 
data; this is known as ‘overfitting’ in the neural 
network literature. The solution rather consists 
in introducing a penalty that is proportional to 
the model order m, i.e. we search for mN such 
that 

m N- - arg min 
WZSN 

(62) 

This technique is clearly equivalent to the 
celebrated Mallows- Akaike criterion (Akaike, 
1970; Mallows, 1973). The following result, due 
to Polyak and Tsybakov (1990) shows the 
consistency of this procedure. Assume that the 
Fourier coefficients of f in the expansion (11) 
satisfy IC,,I I &,, ET=, &j < WI, (j&j) is non- 
increasing and 03 is known. Set V,,N = llfnnl,N - 
f/l;. Then for the estimate (56) (57) and (62), it 
holds that 

V m,%N 

min Vnl.N 
-3 1 a.e. as N-+m. 

I>, 

Another ‘classical’ adaptation approach is closely 
related to the problem of filtering of a Gaussian 
stationary process. The technique developed in 
Efroimovich and Pinsker (1982, 1984) for the 
projection estimates is often referred to as 

t In fact, a similar result holds for the spline or 
piecewise-polynomial ones. 

Efroimovich-Pinsker filter. To understand the 
idea of the method, let us consider the estimates 
?j, j = 1, . . . ) Nj of the Fourier coefficients Cj off 
as in Section 5.3. If the observation noise (e,) is 
independent Gaussian then the errors 2,y - Cj are 
Gaussian and uncorrelated (and thus indepen- 
dent), and the Wiener filter can be applied to the 
sequence ~j to obtain the estimates Zj of cj: 

(63) 

It can be shown that this choice of Fourier 
coefficients yields the least possible asymptotic 
L2 error among all ‘projection’ estimates. 
Naturally, the exact values of the coefficients cj 
are not available. To construct an adaptive filter, 
Efromovich and Pinsker proposed to use instead 
of the filter coefficients their estimates, which are 
obtained in the following way; we divide the set 
of indicesj=l,..., N into m groups: T, = {j = 
1, j = 2}, . . . , Tk+,={j=2k+1, . ..) j=2k+‘}, 
. . . ) T, = {j = 2”‘-’ + 1,. . . , j = 2n’} (we have 
supposed for the sake of clarity that N = 2”‘). We 
set 

where 

(here IT,/ is the cardinality of Tk). Finally we put 

Zj = hkCj 

for all j E Tk. It was shown (cf. Efroimovich and 
Pinsker, 1984) that this adaptive filter is 
asymptotically equivalent to the optimal one 

(63). 

Remark. Note that the adaptive algorithm, 
though we have developed them starting with 
linear methods, are no longer linear. Quite 
naturally, when trying to infer some additional 
information from the data, we lose the linearity 
of the estimates. 

6. ESTIMATION IN CLASSES OF LOCALLY SPIKY 
AND JUMPY FUNCTIONS 

6.1. Spatial adaptivity 
The estimation of functions with sparse 

singularities should naturally be based on 
function approximation in the corresponding 
smoothness classes. This was discussed in 
Sections 2.2-3.5. During the 15 years, this topic 
has been a very active field in the statistical 
community and has been characterized by 
successful practical applications, but, oddly 
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enough, an almost complete lack of theoretical 
results. Spatially adaptive methods include all 
sorts of neural networks, projection pursuit 
(Friedman and Stuetzle, 1981), classification and 
regression trees (CART) (Breiman er al., 1984), 
multivariate adaptive regression splines (MARS) 
(Friedman, 1991) variable-bandwidth kernel 
methods (Mtiller and Stadmtiller, 1987) and 
others. 

These methods implicitly or explicitly attempt 
to adapt the fitting method to the form of the 
function being estimated, by ideas like recursive 
dyadic partitioning of the space on which the 
function is defined (CART and MARS) and 
adaptively estimating a local bandwidth function 
(variable-kernel methods). 

We discuss now some issues related to the 
problem of spatial adaptivity. In fact, so-called 
‘spatially adaptive’ methods address two 
different problems: 

Estimating functions that have sparse singularities 
and otherwise are smo0th.I An interesting 
approach consists in finding a parameterized 
family of functional classes that 

(i) fits our prior knowledge about the smooth- 
ness of the function to be estimated, (in 
particular, that f is smooth everywhere, 
except at a sparse set of points); 

(ii) has associated with it an estimation technique 
that is minimax within these classes. 

It was the merit of Donoho and Johnstone 
(1992a) to recognize that Besov spaces, which 
play a central in Meyer’s mathematical theory of 
wavelets (Meyer, 1990), provide an adequate 
answer. They are perfectly suited to nonlinear 
systems that have sparse singularities and are 
otherwise smooth. The methods used can be 
qualified as local function expansions, they 
provide a combination of local averaging and 
short-range interpolation. 

Handling geometric issues in the multidimen- 
sional case. If, for instance, the function of two 
variables f (x, y) is ‘regular’ in x (in the extreme 
case f (x, y) = g(y) does not depend on x) and 
‘irregular’ in y then an ‘intelligent’ estimation 
algorithm would approximate f thoroughly only 
in the y direction. In this way, the problem can 
be reduced to that of function estimation in one 

t The CART and MARS algorithms and the variable- 
bandwidth kernel method were designed to handle this 
problem in multidimensional cases. Surprisingly enough, the 
AI literature has proposed independently and at the same 
time different techniques with the same feature of ‘spatial 
adaptivity’. These include various forms of neural networks 
(Hunt et al., 1992). 

dimension, with a correspondent improvement in 
the rate of convergence. This effect is often 
called ‘dimensionality reduction’ in the statistical 
literature. Starting from the early 198Os, a 
variety of techniques have been proposed in the 
statistic literature that exhibit this desirable 
feature of ‘dimensionality reduction’. The 
projection pursuit algorithm and neural network 
algorithms already mentioned are examples of 
this idea. This contrasts with wavelet’ and other 
local averaging procedures, in which the 
smoothing is done over small balls {x : Ix - x01 5 
E’}. It was shown in Donoho and Johnstone 
(1989) that, in a certain setting, projection-based 
and local-averaging function estimates have 
complementary properties. 

We shall defer the discussion of the second issue 
to Section 8. 

In the literature on non-parametric regression, 
the focus, so far, has been on locally adaptive 
bandwidths for kernel methods; see Vien (1991) 
for an example. Adaptive local linear regression 
is treated in Fan and Gijbels (1992). 

6.2. Wavelet shrinkage algorithms 
Wavelet shrinkage algorithms offer the dual 

advantage of being (i) spatially adaptive (and 
thus practically efficient) and of low compara- 
tively computational cost; (ii) supported by a 
complete mathematical analysis. This dual 
feature is rather unique, so we now concentrate 
on this technique. 

Non-parametric regression. Assume that N 
samples of input/output observations of the 
following system are available: 

x = f (Xi) + W;J 

where (Xi) and (Wi) are i.i.d. sequences of 
random variables, Xi is uniformly distributed on 

LO, 11” and Ewi = 0, Ew? 5 oi. These assump- 
tions are introduced for the sake of simplicity. 
They can be weakened-in particular, the 
(unusual) assumption that X is uniformly 
distributed can easily be relaxed (see Delyon and 
Juditsky, 1995); this would introduce an 
additional burden to our presentation, however. 

For f E L,, recall the wavelet expansion 

f(x) = ,c, %k@clk(x) + c c 2$’ P$‘Y$‘<x>, 
E i=o keH” /=I 

(64) 
where 

(Y Ok = 
s 

f (X)@Ok(X) cl& Pj:) = 
I 

f (x)w,!3(x> dx. 

(65) 
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To construct an estimate off, a first idea consists 
in using the law of large numbers and replacing, 
in the expansion (64) the coefficients ffk and @ 
by their empirical estimates 

Note that the assumption that input X is 
uniformly distributed has been used at this point. 

Density estimation. Assume independent obser- 
vations X,, . . . , X, of some random variable X 
with unknown density f(x) are available. Again f 
can be expanded using (64) and (65). But it turns 
out that 

(Y Ok = I f(X)@OktX) dit- = Ef@OktXi) 

where E, denotes the expectation with respect to 
the density f, and the same holds for the ps. 
Thus empirical estimates of the wavelet 
coefficients (Yk and @jk are given by 

(67) 

Thus both non-parametric regression and density 
estimation are faced with the same issue: in (66) 
and (67) there may not even be Xi available 
within the support of many of the @s and Ys! 
We shall now discuss this key point for the case 
of density estimation. 

Obviously, in order to compute the empirical 
coefficient 812, we need to have at least several 
observations X, hit the support of Y$)(x). 
Statistical laws of log log type guarantee that this 
will generically hold for scales that are not too 
fine-more specifically, for j 5 imax, where 

N 2N ~ 5 2dk. 5 - 
In N 1nN’ 

Thus, by brute force, we set @$ = 0 for j > imax. 
At this point we have built an estimator of the 
linear projection type, as in the case of Fourier 
series in Section 5. Since these estimators are 
linear, we cannot expect them to be efficient for 
Besov spaces (Kerkyacharian and Picard, 1992). 

A first proposal. Our first attempt to construct 

an (‘interesting estimate’ is, following the 
intuition at the end of the previous section, to 
keep a properly chosen number of coefficients 
with largest absolute values, and set the others to 
zero. More precisely, let us consider the set &, of 
pairs A = (j, k) corresponding to the n estimated 
wavelet coefficients fi$) with largest absolute 
values. We construct the estimate ,& as follows: 

.fi’(x) = 2 sOk%k(x) 

(68) 
j=O ksi? I=1 

keep the la&t n - m co&is 

The following result can be proved about the 
estimate (68) (see (15) for the definition of the 
Besov spaces). 

Theorem 7. Let f E .%&, with s rdlp, 11 f llr < 
03. If n = N1’CZr+d) is selected in (68) then 

E [If,., -f II; = O( y)ZII(LTtdJ. (69) 

The idea of the proof of Theorem 7 is quite 
intuitive and typical for wavelet estimators. We 
follow the argument at the end of the previous 
section with only the following difference: since 
no information is available about the distribution 
of the error IpA - pAI for A E A,,, we take a 
cautious upper bound for it: 

which explains the extra logarithmic factor in 

(69). 

The final solution. Note that II in Theorem 7 
depends on s, which is generally unknown. 
Hence, to complete the estimation algorithm, we 
need a method to estimate our model order n. 
Though generalized cross-validation-type tech- 
niques could be used, we prefer a somewhat 
different estimation approach developed by 
Donoho, Johnstone, Kerkyacharian and Picard 
(see the references below). It uses simple 
thresholding rules: t 

t We consider here so-called ‘hard thresholding’; me- 
anwhile, other rules can also be studied, for example ‘soft 
thresholding’ (Donoho and Johnstone, 1992b). See also the 
discussion in Delyon and Juditsky (1993). 
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where Aj is a threshold parameter, so we set 

In other words, in the expansion (64) we keep 
those empirical estimates of wavelet coefficients 
that exceed some properly selected threshold. 
How this threshold should be selected is 
provided by the following result. 

Theorem 8. (Donoho et al. (1993a).) Let f E 
9?&, with s 2 d/p, 11 fllr < CD. Select Aj = A = 

d(C In (N)/N, with an appropriate C < ~0. Then 

The constant C in the expression for the 
threshold parameter A is a sort of an 
‘hyperparameter’ of the procedure, it can easily 
be estimated; see Delyon and Juditsky (1993) 
and Donoho et al. (1993a) for related discus- 
sions. Note that the estimator & is adaptive, 
because it does not require prior knowledge of 
the regularity parameter. 

Discussion 

. Theorem 8 has the following intuitive 
explanation. As already mentioned, Besov 
classes 5!& for p < 2 have a special structure: a 
relatively small number of ‘important’ wavelet 
coefficients are sufficient for obtaining a good 
function approximation. In the wavelet de- 
composition (a,, fi$) using noisy data all 
coefficients are ‘contaminated’ by noise. A 
Central-Limit Theorem argument suggests 
that this noise is approximately Gaussian with 
zero mean and variance 0(1/N). Thus a log 
log law implies that the maximum error in the 
estimates has magnitude given by 

Thus when small (according to threshold A in 
Theorem 8) coefficients are shrunk to zero, 
noise is canceled with very high probability. 
On the other hand, coefficients exceeding this 
threshold are likely to be significantly different 
from zero. This property of thresholding 
explains another useful feature of the es- 
timator: the estimate f, has the same 
regularity as the unknown function f to be 
estimated (cf. the discussion in Donoho et al., 
1993b). 

Let us now consider again our example of 
estimating the regression function or density 
f(x) = llO5x+. Theorem 8 states that the 
mean square rate of convergence of the 
wavelet estimator for any bounded function 
f E %‘-Ix is very close to @N-l), which is 
nearly as good as the ‘parametric’ rate of 
convergence, though the function we estimate 
is not even continuous. Let us compare the 
results above with the lower rate of conver- 
gence for this problem obtained in Nemirov- 
skij (1985). Using Comments 2 of Section 2.2, 
the following lower bound is a direct corollary 
of the results of Nemirovskij (1985), which 
were originally formulated in terms of Sobolev 
spaces: 

inf f”ug E I@,, - f \I2 2 CN-2F’(2F+d) (72) 
N = ’ P’, 

for any estimator f,,. Compared with (72), 
there is an extra logarithmic factor in the 
upper bound of Theorem 8. In the more subtle 
construction presented in Donoho and John- 
stone (1992a), this logarithmic factor is 
eliminated (and even a precise minimax 
constant is obtained) in the case of Gaussian 
noises and deterministic design (observations 
are xi = i/N, i = 1,. . . , N). In Donoho and 
Johnstone (1993a) a cross-validation proce- 
dure is proposed to adapt the optimal 
algorithm to unknown smoothness. Finally, in 
Delyon and Juditsky (1993) it was shown that 
properly selecting the threshold A for shrink- 
ing provides the optimal rate of convergence 
(without a logarithmic factor). An adaptive 
version of this algorithm is developed in 
Juditsky (1994). 

Finally, a more practical version of this wavelet 
shrinking algorithm is presented and discussed 
in the companion paper by Sjiiberg et al. 
(1995). In particular, for the non-parametric 
regression problem, this version relaxes the 
irrealistic assumption that input X is uniformly 
distributed. 

7. APPLICATION TO NON-PARAMETRIC 
AUTOREGRESSION IDENTIFICATION 

Let us apply the technique developed above to 
the problem of identification of a simple 
nonlinear dynamic system. Consider the system 

yi=f(yi_l)+e,, y,~aB, i=l,..., N, (73) 

where (ej) is a sequence of i.i.d. random 
variables, Eel = 0, Ee: = (I-:. We want to 
estimate the function f(x). It is clear that the 
accuracy of this estimate cannot be measured 
using usual L, norms on I& Indeed, if the system 
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(73) is stable then most of the observations are 
concentrated in a compact set; thus the value 
f(x) for large x cannot be reconstructed with 
reasonable precision. However, as we have 
already seen in Section 1, a ‘commonsense’ 
measure of the accuracy (risk) of the estimate p 
of f could be 

R&f) = E L&v(Y~) -I? 

- E lL@) -f(x)12&) d& I I 

where pY is the invariant density of the Markov 
chain (Yi). We can implement the wavlet 
shrinkage algorithm for this system. 

We are confronted here with two problems: 
the first is that the observations y, are dependent; 
the second is that the density of observations Yi is 
not uniform. This first difficulty is handled by 
fine theoretical considerations without any 
impact on the estimation algorithm. To deal with 
it, we require certain stability conditions of the 
Markov chain (yj) (for details, see Delyon and 
Juditsky, 1995). The second problem requires 
that the optimal threshold in the shrinkage 
algorithms now depend on the index k of the 
empirical coefficient fijk.t We can cope with this 
problem also: it appears that in this case the 
ideal threshold would be 

: 

2 In N 
h/k = u, 

Np,(2 +‘k) ’ 
(74) 

where pY is the invariant density of the Markov 
chain (y;), i.e. a higher threshold is used in 
low-density regions. Though this density is not 
known a priori, it can easily be estimated, using 
for instance, a simple histogram estimator p. 

It can be shown that under certain conditions 
on the underlying Markov chain this procedure 
supplies us with optimal (in the minimax sense) 
estimates of f (cf. Delyon and Juditsky, 1995). 
To illustrate the efficiency of this method, we 
present here a simulation example: we estimate 
the function f(a) using the fast wavelet estimator 
described in Sjoberg et al. (1995) with adaptive 
thresholds fi, estimated according to (74), with 
p(a) being substituted with p(e). We consider the 
following three functions f in the model (73): 

f(y)=y -2signy (‘sigmoidal’ signal), 

f(Y) = 0.9Y, (‘linear’ signal), 

f(y) = Y - 2(signY 

- 0.9 sin y) (‘sine’ signal). 

(e,), i = 1, . . . , N is supposed to be a sequence of 
independent Gaussian random variables with 

t Recall that in the case of uniformly distributed inputs we 
used the uniform threshold Ajk = A. 

g2 = 1. The estimate p is computed using 
Ne= 1000 observations Yi, i = 1, . , . , N. 

In Figs l-3 we present together with the signal 
(Yi), the resulting estimate, and the histogram 
estimates /j of the density p(y).? The estimated 
values of the risk RN@,,) are presented on the 
figures, where it is called ‘error’. We consider 
that the proposed algorithm provides a good 
quality of visual reconstruction. Amazing quality 
of fit is obtained for linear J: Indeed, in this case 
the well-known Cramer-Rao lower bound* gives 

One can see that the corresponding value for the 
wavelet estimator is of the same order of 
magnitude. 

8. ESTIMATION OF HIGH-DIMENSIONAL SYSTEMS 

As we have seen in Section 3, the curse of 
dimensionality is encountered when estimating 
functions with large dimensional inputs, and one 
has to resort to methods that reduce the effective 
dimension of the input. All the methods 
reported in Section 3 can be and have been 
(sometimes successfully) used in estimation. 
However, there are only a few theoretical results 
available today. In this section we shall show 
how the approximation technique given in 
Section 3.4 can be adapted to the estimation 
problem. 

8.1. Wavelets 
We shall now construct an estimation algo- 

rithm based on the approximation result of 
Theorem 4. It is essentially based on the idea of 

Signal Sigmoidal 

-5’ r” I I 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

Histogram ot Sigmoidai Sample size = 1OIXI 

20 

10 

0 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

5, 
Estimated Sigmoidal Error = 0.07202 

I <-- - \ 
0 11 _-- 

-5’ 
1 I 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

Fig. 1. 

t We use the TeachWave package by Donoho and 
Johnstone (1993b). 

$ This is a parametric problem! 
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Signal Linear 
10, I 

-10’ -8 -6 -4 -2 0 2 4 6 

Histogram of Linear Sample size = 1000 

40, I 

Estimated Linear Error = 0.01326 
10, 1 

-10’ I 
-0 -6 -4 -2 0 2 4 6 

Fig. 2. 

truncation proposed in Donoho and Johnstone 
(1992b). 

Estimation algorithm: 

Sample length N: set /3 = d - i and 

N c-1 
l/d 

n = fi, amin= N-‘I*” , a max = 
1nN ’ 

Compute 

$,(a, t) = a%,(a, t). 

Truncate: 

&(a, t) 

= LiN(a, t) 

1 

if IGN(a, t)l 2 KGZWX, 

0 if IO,(a, t)l < Km. (75) 

Compute CN = llacd-‘)‘*GN(a, t) II, and draw n 
independent points (a,, t,), . . . , (a,, tn) ac- 
cording to the density GN(a, t) = 
la (d+‘)‘2fiN(a, t)l/CN. 

Signal sine 
5, 

-5 -l -3 -2 -1 0 1 2 3 4 5 

30 

20 

IO 

4 -3 -2 -1 0 1 2 3 4 5 

4 
Estimated sine Error = 0.06075 

I 
2- 

o- -_ 

-2 
-5 -4 -3 -2 -t 0 1 2 3 4 5 

Fig. 3. 

5. Compute 

&N(x) = C,n-’ $, (ak)d’2 sign P(ak, tdl 

X Nak(x - 4J). (76) 

The key point of the algorithm is the truncation 
procedure of step 3 in which we shrink to zero 
the ‘density’ ir, if its amplitude is less than 
Kd(ln N)N. This step has a nice heuristic 
explanation (cf. Section 6.2). Note that D,(a, t) 
can be decomposed as D,(a, t) = u(a, t) + 
E,,,(a, t), where I+,(*) is the corresponding true 
density, and c(e) is a centered random noise with 
variance of order N-‘. On the other hand, the 
condition IIw 11, = I)a (d-1)‘2u 11, < CC implies that 
u(a, t) = 0(1/V’?? on a subset of {a 5 (Nlln N)““} 
of the underlying measure. So, putting all these 
terms into the sum (76) would mean adding 
noise to our estimate and negligible useful 
information. Therefore we can improve our 
estimate significantly when shrinking these terms 
to the zero. 

The only parameter of the algorithm to be 
chosen is the truncation parameter K in (75). It 
depends on Ilf II= and on Eef, and can be 
estimated ‘on line’. Furthermore, the algorithm 
is not too sensitive to this parameter, and it can 
be often chosen on the basis of the available a 
priori information. 

The theoretical analysis reveals that if the 
function f(a) is bounded and f E w’*+’ n %$‘4cp 
for some E > 0 then the following bound holds 
for the estimate &: 

for some C < cc. This means that the proposed 
algorithm achieves ‘up to E’ the rate of 
convergence of the estimators discussed in 
Section 6.2. 

9. CONCLUSIONS: THE GAP BETWEEN THEORY 
AND EVERYDAY PRACTICE 

In this paper we have surveyed and discussed 
part of the mathematical foundations of 
nonlinear black-box modeling. What mathe- 
matics tells us can be summarized as follows. 

l The bias/variance trade-off is a key factor, as 
it always is in system identification when 
model order is not known a priori. Error 
variance depends on how many parameters 
are used for fitting. Thus efforts concentrate 
on reducing the bias without increasing the 
number of parameters in the model. Since we 
are dealing with nonlinear systems, there is 
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much more flexibility in handling this problem 
than in linear system identification. Thus we 
have paid a lot of attention to function 
approximation issues as a prior topic before 
considering estimation from noisy data. 

Function approximation depends very much 
on the function space under consideration. 
Thus we are faced with the new problem of 
having to specify the function space to which 
our unknown system is supposed to belong; 
this is prior information referred to as the 
smoothness class. Such kind of prior informa- 
tion is not easily at hand, however; therefore it 
is of primary importance to design procedures 
which are equally efficient for various classes 
of functions. 

Approximation (and estimation) methods 
have been known for a long time that perform 
equally well for various smoothness classes of 
systems, provided that they consist of 
uniformly smooth systems. Among such 
methods, one finds classics of non-parametric 
statistics such as kernel and linear projection 
estimates. 

These methods perform poorly on systems 
that are smooth, but with some spikes and 
jumps. Unfortunately, such nonlinear systems 
are frequently encountered in practice. 
Approximation and estimation methods have 
been proposed that are spatially adaptive, i.e. 
that are able to locally adapt the smoothness 
of the approximants or estimates to the 
function to be approximated. They have 
proved efficient and successful in practice. 
They were more or less attractive, depending 
on their computational and memory cost (as 
well as psychological appeal). Within this large 
army of methods, neural networks have 
reached the top in celebrity. Results are 
available that mathematically support the 
success of these methods for approximation, 
but few results are available to support their 
use for estimation. 

Besov spaces have been revealed to be nicely 
associated with Besov spaces, since Besov 
norms are easily evaluated using wavelet 
decompositions. Thus wavelet-based estima- 
tion algorithms are the only class of algorithms 
for which a complete analysis is available 
today, both for approximation and estimation. 
These theoretical results show the optimality 
of these algorithms. 

Getting lower bou@s for convergence rates of 
estimation procedures is much more involved 
than for parametric estimation, in which key 

tools are the Cramer-Rao bound and the 
Fisher information matrix. Lower rates and 
minimax optimality were introduced to this 
end. These tools are much more technical and 
difficult to use than the Cramer-Rao bound 
and the Fisher information matrix. 

The curse of dimensionality refers to the fact 
that one barely has enough data for fitting 
when the input dimension is large. The notion 
of ‘effective dimension’ that we discussed 
somewhat informally plays an important role. 
Function classes of low ‘effective dimension’ 
can be found and used for analysis in the case 
of high-dimensional inputs. 

Altogether, non-parametric estimations can 
also be considered as maximum likelihood 
estimation for unknown systems with un- 
known and unbounded model order. Consis- 
tency, convergence rates, and 
AIC/BIC/. . ./XIC criteria are the classics. 
Two difficulties occur in applying this point of 
view to black-box nonlinear system identifica- 
tion. First, the ‘good’ parameter dimension is 
typically very large, so that AIC/BIX/. . ./XIX 
are not very practical. Second, and most 
importantly from the theoretical point of view, 
asymptotic results involve the argument of the 
minimum of the likelihood. But the likelihood 
is very non-convex, and no procedure is 
provably known to find the minimum. This is 
why we did not pay great attention to this 
point of view in this paper, where emphasis 
has been on mathematical results only. 

Obviously, the everyday practice in nonlinear 
black-box modeling is quite different from the 
direct implementation of mathematical tech- 
niques. Now, there are several factors which may 
explain the gap between the mathematical 
foundations and the practical confidence in this 
or that method-in particular the following. 

Computational cost and memory requirements 
could be formally considered, but have not 
been discussed in this paper. 

How bad a non-convex functional is for 
optimization, especially in high dimensions, is 
hard to assess. 

Since the authors of this article and the 
companion one (Sjoberg et al., 1995) are the 
same, we should be quite inconsistent if we 
blindly trusted just the mathematics as a 
guideline for implementation. Nonetheless, 
mathematical results have the advantage of 
providing theoretically sound intuition and 
guidelines about how and why methods perform 
good or bad in various situations. 
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