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on Output Prediction Errors
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Abstract—We consider a switched nonlinear feedback control 0,
strategy for controlling a plant with unknown parameters so that * ‘ ! e
the output asymptotically tracks a reference signal. The controller 20 3 o
is selected on-line from a given set of controllers according to Bwitching '_{__—|_2_:—
a switching rule based on output prediction errors. For control :
problems requiring asymptotic tracking of a reference input we o g 0y
provide sufficient conditions under which the switched closed-
loop control system is exponentially stable and asymptotically

achieves good control even if the switching does not stop. Our
results are illustrated with three examples.

) uft) y(t)

—

Index Terms—Adaptive control, hybrid control, supervisory

control, switching. Switch

|. INTRODUCTION
Fig. 1. A prediction error-based switched control system.

E EXAMINE the problem of controlling a fixed linear

continuous-time plant with unknown parameters so =~ =~ o ) ] )
that the plant output asymptotically tracks, with some desirdlys situation is of theoretical interest since it provides a lower
accuracy, a bounded reference input. The control strategy tRQNd on what can be expected in practice. o
we analyze is based on switching among a family of fixed The above architecture for on-line controller switching
controllers at certain decision times based on a switching lod]@S been proposed and examined in several special cases
that attempts to select a good predictor for the plant. in [12]-{14], [7], [11], [18], and [2]. In [12] and [13] the

There are several elements to the controller architectuRSoPlem of tracking a constant set point for single-input/single-

First, we have available a family of model-controller pair€utPut (SISO) linear time-invariant (LTI) systems is studied.
(2,,,), p € P. The index setP may be finite, countable At a sequence of decision times, the performance of the
or pé go}npact subset of some metric space. Contrdligr predictors is compared, and the controller corresponding to
stabilizes model:, and yields desired asymptotic trackingthe best predictor at that time is selected. The sequence of

performance for a class of admissible reference signals. ThE§&CtONS is not required to converge and in general will
requirements will be made precise in Section Il. For eadipt do so. Nevertheless, the system variables remain bounded

model we run a corresponding predictoy, driven by the and the output of the SISO system converges to the constant
inputs and outputs of the plant, and the resultant predictifi-Point- In [11] and [18] switching is used to select a
errors are used to form a real-valued performance measGp@troller structure matched to the similarity invariants of the
for predictorp. Then at certain decision times, a supervisdtant, and in [2], [15], and [16] it is used to improve the
uses the performance measures to select a controller from fi@@sient performance of stable adaptive control schemes. In
family {I', p € P} to be connected in feedback with the plam[.7] c.o.nvergent Qemsmn rules are studied. It is shown _that for
The resultant nonlinear switched control system must ensif¥/lti-input/multi-output (MIMO) LTI systems there exists a
boundedness of the process states and satisfy an asymp&RQvergent selection rule under which the supervised control
tracking performance criterion; see Fig. 1. system is stable and satisfies a performance criterion with
We consider the simplest case in which the transfer functi6RSPECt to a class of admissible inputs. Several other controller
of the unknown plant exactly matches that of one of the knovavitching strategies have been examined in the literature.
deterministic model{3,, p € P}. This may be regarded asCenerally, these involve strategies that use a predefined search

a case of purely parametric uncertainty. Although unrealistg€duence, e.g., [3], [9], and [10]. Roughly, these operate by
switching into feedback with the plant a predefined sequence
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« We show that the output of the prediction-based su- Similarly, we are given (or have constructed) a family of
pervised control system is the sum of the output of Tl systemsA,, p € P, with a common state realization of
time-varying system in which at every momehi, is the form
controlled by the concurrent controllEy, and a prediction iy i _
error term. The stability of the above-mentioned time-"7* #t) = Fa(t) + Gy(t) + Lu(t) + Rr (1), #(to) =20
varying system can be assured using standard results from p(t) = Hpz(t) + Spy(t) + Tpr(t) (5)

the literature on slowly time-varying systems [4], [3], [6],,nere #(t) € R* and the dimensions of, G, L, R, H,,

[17]. , i . Sp, and 7,, are appropriate. Under the feedback connection

e Our first result, Theorem 4.3, provides sufficient condi- ; ; ot
: ' ' (t) = up(t) in A, we obtain a realization of an LTI system
tions on the models and controllers such that even

- ) which we will call the pth controller.
switching between the candidate controllers does not stoﬂ’,—rhe assumption of a common state realization for the

selecting a good predictor will imply good tracking cony e qictors and controllers is standard in adaptive control:

trol. These conditions are illustrated with three example§ee for example [13] and [14]. One such realization can be
As a special case, we provide a more direct proof Ofcaonstructed as follows. Set

result given in [13].

¢ Finally, in our second result, Theorem 5.1, we show that, Af = <AI 0 )7 N = <0 )7 K= <b1>
under a mild additional assumption, the key condition 0 A b 0
in our set of sufficient conditions is always satisfied if/vhere(AI,bI) is a parameter-independendimensional con-
the switched control system is required to asymptoticaltyollable pair, and4; is stable. For simplicity suppose that

exactly track the reference signal. (A7, br) is in controllable canonical form. By choice df,
we can ensure thdiC,,, A,, N} is detectable and stabilizable
Il. FORMULATION and is a realization of any given strictly proper transfer

We can select the inpui(t) and observe the outpytt) of ~fUnCction ,(s) = by(s)/ap(s) with McMillan degree at most
an unknown SISO systed, hereafter called the “plant,” with 7- Détectability follows immediately from the stability of;
McMillan degree at most and a stabilizable and detectablétnd the fact thatl, = M + K C,,. To verify stabilizability and

7i-dimensional state space realization that we can seledl’, to achieveh,(s), compute the transfer
i function of {C},, A,, N}
Yo 2(t) = Az(t) + Bu(t), x(to) = xo
yl1) = (). D gero a2 Gl A
P P o 1—0;(8.[—.4])_1()[
The objective is to select the inputt) so that the output B, (s)/w(s) by(s)
y(t) asymptotically adequately tracks a reference sigt(a) = =2
generated as the output of a finite-dimensional autonomous (w(s) —ap(s)fwls)  ap(s)
linear system of the form whereC, = (C}, C2), w(s) £ det(sI — Ay), anddeg(3,) <
= B(t) = fot), 0) — n—1, deg(a,) = n. Sincedeg(a,,) < n, itis possible to select
¢( )= Jo(0) #0) = do (2) C, such thatg,(s) = 8(s) - b,(s) andw(s) — ap(s) = 8(s) -
r(t) = g¢(t) ap(s) whereé(s) is a stable polynomial. ThufC,,, A,, N} is

where for each initial conditiom, the state trajectory ¢t is  stabilizable with transfer functioh,,(s).
bounded. The reference signal is thus bounded and completelgimilarly, a common state realization of the controllers can

specified by the selection of an initial condition f&r be obtained by setting
We are given (or have constructed) a family of LTI systems A; 0 0 by
Op,p € P, with a common state realization of the form F= ( 0 A, 0 ) 7 K — (0 )
Op: w(t) = Mw(t) + Nu(t) + f(y(t)7 w(to) = wy 0 0 Ay 0

Gp(t) = Cpu(t)

(t) = Cyult) - y(t) o L (f) o (8 )
wherew(t) € R*, u(t) € R, y(t) € R; the dimensions 0 by

of the matricesM, N, K, and C,, are appropriate. This sys-Then selecting: = u, yields
tem will be used as a predictor of the plant output. The -1
HP(SI bt A[) b[

predictor outputs arej,, the prediction ofy(t), ande,, the Up(s) = ——Y(s)
corresponding prediction errop, € P. 1= 5p(sl = Ar)=tbr
If we sety(t) = §,(t) in O,, then we obtain a realization T(sI — Ap)~'or R(s) (©)
of an LTI systemy,,, p € P 1= Sy(sl = Ar)~toy
Ypr @p(t) = Apry(t) + Nult), z,(to) = o Thus by suitable choice df,,, S,, andZ}, I, is a stabilizable
up(t) = Cpp(t) (4)  and detectable realization of any given strictly proper trans-

fer function g, (s) = [b}(s)/c(s), bi(s)/c(s)] with McMillan
where 4, 2 M+ KC,. We callX, the pth system model. degree at most.
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The equations of the systefiX,,[',) consisting of®, in 7, from the designed controller transfer function using the

feedback connection with', are method indicated in (6). By choice @%, these functions are
continuous. More generally, we can taRe= | _, P}, where
Fpp(t) = AppTpp(t) + <R;\;;TP>T@) the P, are constructed likeP,. .
P (7) We now describe how the given controllers are connected
Ypp(t) = (0, Cp)app(t) to the plant. At each term of a strictly monotone increasing

sequence of switching times (that may depend on the initial
condition of the plant, predictor, and controller), the controller
A A <F +LH, GC, + LS,C, ) ®) connected to the plant will be “switched” among the family
PP NH, M+ KC, +NS,C, parameterized by € P. Givenp > 0 we require that the
sequencédry, k > 0} satisfiesr.; — 7 > 7p, for eachk > 0.
The models and controllers, parameterized as indicatgfch a sequence is said to bg- admissible It will not be
above, will be assumed to satisfy the following constraints.jmportant exactly how the switching times are selected, only

where

Assumption A1) The matrices/ and I’ are Hurwitz. that they satisfy this form of constraint.
Assumption A2) The matrix4,, is Hurwitz with stability =~ The selection of which controller to be connected into
margin . feedback with the plant at switching time is based on per-

Assumption A3) The controlled systefi,,,I',) yields ac- formance indexes for each of the predictors. The performance
ceptable asymptotic tracking performancéndex J(¢,p) of predictor p at time ¢ is a function of the
over the admissible class of referenc@rediction error signat,(s), s € [0,t]. For example, for fixed

signals. A > 0 we might set
Assumption A4) P is a compact metric space with metric .
) Jep) = [ e o) ds. ©)
Assumption A5) The functionsfi: p — Cp, fa: p — 0

Hp, fs:p > Spoand fy: p = T, @€ Then ot each switching time,, an indexg, € P is selected
continuous with respect to the metric Ofyaceq on the value/(,p), ¢ € [0,7i],p € P} according
7 and any matrix norm. to specified decision rule. The controllgy, , driven by the
Together, A3) and A2) impose the constraint that title reference inputr, is then connected in feedback with the
controller should stabilize theth model with a stability margin plant over the time intervalry,, 7.41). The simplest instance
v that is independent gf and satisfy the asymptotic trackingof a decision rule is a fixed functiog:R? — P with

criterion. It will not be necessary at this point to give @, — g(J(1x,p),p € P). For example, the rule used in [13]
specific criterion for acceptable asymptotic tracking. Howeveg (roughly)

as examples of suitable criteria we mentidim,_, .., |y(t) —
r(t)| = 0 (asymptotic exact tracking) arlthn sup,_, ., |y(t) — g = argmin,cp{J (7, p)}. (10)
r(t)| < e (asymptotice-tracking). Other criteria are also clearly

possible. Assumption A4) can be satisfied by the discrelfire complex rules can easily be envisioned; see, e.g., [7] and
metric if P is finite. If P is a closed and bounded subs 1]. However, all that will be important for our investigation

of R* for some positive integet, then we might takel(-,.) IS that the rule has certain basic properties. _

to be the metric induced by a suitable norm BA. If P is Let o(¢) denqt_e the pleceW|se—cpnstant S|g.nal taking values
finite andd(-,-) is the discrete metric, then Assumption A5J" 7 that specifies the controller in use at timeand I?t_a—

is trivially satisfied. However, whe® is a compact subset of d€note its set of limit points ifP. By Assumption Ad)s is

R, it is a nontrivial assumption—it requires that we havBOnempty. Let?* C 7 denote the set of predictors for which
designed the controllers so that they satisfy A2) and A§je prediction error decays to zero along the system trajectory,
and vary continuously with respect tp € 7. To show that €+ P* = {p € P: ¢, — 0}. Clearly5 and’P* depend on
such parameterizations exist it is sufficient to assume tH8 initial conditions. o ,

there exists a design procedure for determining a controller/V& restrict our attention to switching rules that satisfy one
transfer functiony(s) from a stabilizable and detectable planf! More of the following.

realization such that A2) and A3) are satisfied and such thatAssumption RO) For all initial states of the plant and the

the parameters ig(s) vary continuously as the parameters in predictor, e,y — 0 ast — co.

the plant realization vary over some open set containing theirAssumption R1) There exist constans « > 0 such
nominal values. In this case, we can tak® be the vector of that for all plant initial states:(0) and
entries inC,, and f,: p — C, is then obviously continuous. predictor initial statesu(0), [eq)(t)] <
Suppose thag, is the parameter of a nominal plant; thét), Ce=*([lz(0)|| + [[w(0)[)-

is a stabilizable and detectable realization of the correspondingissumption R2)5 C P*.

plant transfer function. Then 162, be the closure of any openAssumptions R0)-R2) require that the performance measures
ball containingp, such that{X,: p € P,} is contained in an and decision rule result in the selection of a “good” predic-
open set abouE, on which the controller design procedureor. Clearly, Assumption R1) implies R0). Assumption R2)
is continuous. Then let the mags: p — H,, f3: p — S,, requires that if¢ € &, thene,(t) — 0 ast — oo, ie,

and f4: p — T, select the appropriate values Hi,, S,,, and the only predictors that are selected “in the limit” are those
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that do “good prediction” along the state trajectory. Sincewitching signal. Then along this trajectory

& is nonempty, under Assumption R2) so7%, and under

Assumptions A4) and A5), R2) implies RO). <Z(t) ) =z7(t) + x7°(¢)
These assumptions implicitly define classes of switching w(t)

rules and performance measures. The question of whether y(t) =y () +e(b); t>0

these classes are nontrivial (e.g., nonempty) is closely C‘Wﬁerex;’ andy? are the state and output, respectively, of the

nected to the stability of the closed-loop controlled system, . . o ; 2
and we defer its discussion until after the section on stabili%‘j(WItChecj linear systerti, (,), I'a(y)) With input » and initial

. . . eondition (z , andz?¢ ande are the state and output of
In summary, the closed-loop switched system is descrlbﬁﬁs syste(rgo’tgjoi distufganag E(t) P
by the following set of equations: A

_ Proof: Since the switching signal is fixed, writé(t) =
Agry, R(t) = R,qu), and E(t) = E, . Then applying

(19)

&(t) = {l‘f(t)jj(t) + Royr(t)  #(0) = o (1) algebraic manipulations to (11) yields
=Cz 12
(‘?8 - Eog(t) ) = () + KOE®)30) - KOB®R0+ R
$(t) = fot),  $(0) = o (14) = (A1) + K(OE@®)(t) - K(t)eon () + K t)T(t()z-O)
r(t) = go(t) (15) ) )
J(t,p) = he(ep(s)]s=0) (16) Let K(t) £ (K + BS,(1), G+ LSa), K + NS,(1). Then
o(t) = g (J(s,P);o,p €P), if t€[m,mq1). (17) Ao(t) 2 At + K)E(t)
A-KC BH,, KCyy + BS,1yCope
In the above _ ( 0 Fal h(l 30) GCoEt; N LSU((t))Co'((t)) )
(t) 0 NHU(t) M + KCU(t) —i—NSU(t)CU(t)
() = | #(t) ) Write Cy(t) = E(t)+C(t), and leti (¢), e(t) be the solutions
w(t) to the equations

Bi(t) = A(DF1L(t) — K(eo(t),  #1(0) =0

A+BS,;yC  BH,u 0
Asy=| GC+LS,»yC F+LH,4) O ) A o
KO NSO Moy M) qg) ) = BRI = cow ()
Ry = Rf—%%(t)> and let@,(t), yJ(t) be the solutions of
N NT,q To(t) = Aa(D)F2(t) + R(D)r(t),  #2(0) = #(0) 2
o=@ 0 0 ¥l (1) = Ca(t)ia(t).

Eo = (=C, 0, Cow) It is clear thati() = #1(¢) + #2(t) andy(t) = (1) + (t).

z
. ) . Writing (21) and (22) out in detail, we see thatand y¢
and h:,t > 0 are functions mapping continuous real-valuegre the solutions of

functions on the interval0, ¢] into the real line, andy, is a

sequence of functions mappii” <% into P. FTUE) = Ag ()T (£) — <G+ LSq 1) >eo(t)(t)
In the sequel it will be necessary to consider the joint K+ NS, 23)
trajectories of several state-space systemsr;lft) € R* x2¢(0) = (0,0)
andz»(t) € R*2 are vector valued signals, then the notation e(t) = (0, Co)) 27 (1) = Cogry(t)
(z1(¢),z2(t)) will denote the vector inR* *+*2 formed by o) =
concatenating the vectors, and z. R LT
T g + g
(1) = Aonyornrl (1) + < Ny )T(t)
[ll. STABILITY ANALYSIS 23(0) = (20, wo) (24)
To show that the nonlinear system (11)—-(17) is exponentially  47(¢) = (0, Co())zI (t)

stable, we analyze the system for each initial state and its
corresponding switching signal. Following [7] we first showvhere (z(),w(t)) = xZ(t) + z7°(¢) and
that aI(_)ng any trajectory of the clpsed—IF)op s_ystem the plant _ (F+LH,, GCorty + LSty Cortt
output is the sum of two separate signals: one is the response & ()0 (t) =
) . ) NHyy M+ KCyu + NSo)Cor

a switched linear system to the reference ingwnd the other
is the zero state response of the same system to a predictonthe dynamical matrix of the closed-loop system
error related disturbance. This leads to the following result.(X, ), [ )- |

Proposition 3.1: Let &(t) = (x(¢), 2(t), w(t)) be the state  The reduction indicated in Proposition 3.1 is implicitly used
trajectory of the closed-loop system (11)-(17) with initiain the work of Morse (see, e.g., [13]), but not stated there in
condition g = (xo,wo,20), and lets be the associated this form. It is also used in [7] and [8] in a stronger context.
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In light of Proposition 3.1, we now examine the stability Proposition 3.4:1f A2) and one of the conditions of
of the time-varying linear systenfX,),l';)) for each Lemma 3.2 hold, then for every initial state of the nonlinear
admissible switching signat(t). switched system (11)—(17):

Recall that a time-varying linear systeitit) = A()z(£) iS 1) if e,)(?) is bounded, ther is bounded:;
exponentially stable if there exist constamts k> > 0 such 2) if RO) holds, therlim, .., [|(z(t),w(t)) — zZ(t)|| = 0

that for allt > p > 0, [|(t,w)|| < kie~ "¢, where and limy oo [ly(t) — 47 ()| = 0;

|®(-,)|| denotes the state transition matrix of the system. In 3) if R1) holds, then that the nonlinear closed-loop system
the case at handi(t) = A,()-(1) iS piecewise constant and by is globally exponentially stable in the sense that there
Assumption A2) for eaclp € P, there exist constanis, > 0 exist constants”, 5 > 0 such that withr = 0 and for
and )\, > ~/2 such that for allt > 0, |letrr?|| < elar=ot), all initial conditions, the state trajectory(t) of (11)

Sufficient (conservative) conditions under which a linear time-  satisfies||#(t)|| < Ce=?*(|&(0)].
varying system of this form is exponentially stable are given  proof: Fix an initial conditionz,, and leto(t) denote

in the following lemma. the resultant switching signal. Under A2) and either of the
Lemma 3.2: Assume that condition A2) holds. If one of thegonditions of Lemma 3.2, there exisi§ such that the time-
following conditions is satisfied: varying linear systems (21) and (22) are exponentially stable.
1) the finite dwell time satisfiesp > suppep{i—i}; Furthermore, the constants in the exponential bound do not
2) sup,ep [l Appll < (2 Suppep{;—z}exp[suppep{ap}])—l; depend on the initial conditior.
then the time-varying linear systeifE, ), )) is expo- 1) & anda_?Q are the state trajectorie; of an exponentially
nentially stable for any admissible switching signa(t). stable linear system to bounded inputs and are hence
Moreover, the constants in the exponential bound do not bounded. Thus =z, + 2, is bounded.
depend on the switching signal 2) Under assumption ROy, ;) (t)__—> 0 ast — co. Hence
Proof: For the standard result, see, e.g., [3], [4], [6], [13],  PY (22) and exponential stabilitfim, —o [[Z1(#)[| = O,
and [17]; also see Appendix 1. 0 or equalentl){,h'mt_)C><> |Z2(t) — &(t)]| = 0. Now z9,
Fix an initial conditiong, of =. Then, each initial condition given by (24), is just the second and third vector compo-
of the form (wy,z1,$0) for the asymptotically stable LTI nents of the statg, of (22). Hencer{(t) converges to

(2(t),w(t)) as claimed. Similarly, that the second limit
is zero follows from the first limit and (21) and (19).
By R1), e,1)(t) < Ce™||Z(0)]|. Hence by (21) and
exponential stability, there exist constamtg, a; > 0
such that|z,(t)|| < Kie~**||#(0)||. Moreover,K; and
aq do not depend ori(0). Since the switching signal
is fixed andr = 0, Z5(¢) is the zero input response
of the exponentially stable system (22) with the initial
condition #(0). Thus ||#2(#)|] < Ke™?!||#(0)||. Since
K and X do not depend ow, ||Z2(t)]| < Ke™||Z(0)|

for any initial state of the nonlinear closed-loop system.
It was shown above thak(¢) is the sum ofi,(¢) and
#1(t). HenceZ(¢) converges to zero at an exponential
rate independent of the initial condition. O

system(X,,I',,,Z) gives rise to a trajectory with a nonempty
positive limit set2(w1, z1, ¢o). Moreover, by the asymptotic
stability of the above system this limit set depends only on 3)
¢o. The next lemma gives a trivial result on the convergence
of the state trajectory of%, ), 's(1),Z) that will be useful
later in the development.

Lemma 3.3: Assume that A2) and one of the conditions of
Lemma 3.2 holds. Suppose that for a fixed initial conditfgn
of Z, the LTI systemgX,, '}, E), ¢ € Q C P have a common
w-limit set Q. Then if o(¢) takes values iQ, and the initial
condition ofZ is fixed to begpg, the set is the uniqueo-limit
set for the time-varying linear syste@@, ), s, Z).

Proof: Without loss of generality, we can assume that

the state trajectoryp(¢) of = is almost periodic. Hence, if
Q¢ denotes the set of limit points af(t), then ¢g € Q°. _ _ _
We begin by noting the following properties &t. First, A- Discussion of Assumptions R0)-R2)
for the fixed initial conditiongy, € is an invariant set of We end this section with an additional discussion of as-
(I'p, X5, ), p € Q. Second, if(z,w, ¢g) € (2, then thew-limit  sumptions RO)-R2). Our objective is to use the above stability
set of the trajectory ofl',, X, ) starting from(z,w, ¢) is  result to show that there exist nontrivial performance measures
Q. and switching rules that will satisfy assumption R2). We do

Now for any initial time r > 0, Q is easily seen to so by analyzing a particular choice of performance measure
be an invariant set of%, ), L's(1), ). For (z1,w1,¢0) € and switching rule but do not claim that the case analyzed is
Q, let (z1(¢),w1(t),¢(t)) € Q be the state trajectory of practical; it is simply intended to show that assumption R2)
(Xo(ty, o1y, E) from this initial condition at = 0. Similarly, is not vacuous.
let (22(¢), wa(t), ¢(¢)) denote the state trajectory of the system Let the plant transfer function be equal to that of one of
from any other initial condition(zz, w2, ¢o). the models. Then by Assumption Al) and elementary linear

Set ¢(t) = (21(t) — 22(),wi1(t) — we(t)). Then by systems theory, at least one of the predictors,ga\satisfies
Lemma 3.2lim; .o, ¢(t) = 0. Thus thew-limit set of (z(t), |ep(t)] < Ke™?t. Let the switching times be equally spaced
wo(t), ¢(t)) is the same as the-limit set of (z;(¢), wi(¢), and consider the performance measures

#(t)). The latter set i. O .
We now use Proposition 3.1 and Lemma 3.2 to show the J(t,p) = |ep(t)|2 +/ |ep(3)|2 ds
stability of the switched nonlinear system. 0
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with the decision rule (10). First note that trajectory(zZ (¢), w? (t), ¢(¢)). In terms of(27 we now indicate
¢ sufficient conditions under which the outpyff of the system
J(t,p*) = |ep (1)) +/ lep(s)|* ds (Zo(): Loy, =) will adequately asymptotically track
02 Proposition 4.1: Assume that A2), A4), A5), and one of
< K272t 4 £[1 — 2] the conditions of Lemma 3.2 hold. Lett) be any admissible
- 26 switching signal satisfying the following two conditions.
< K? <1 + 2_16> 2K, Condition C1) For each,q € 7 and(z,w, ¢) € Q7
PR L (Cp — Cyw =0. (25)
Thus if ¢ is the selected controller at each decision tipe
i.e., o(mk) = g then Condition C2) For each,q € 7 and(z,w, ¢) € Q7

7 H,— H)z+ (S, — S,)Cow+ (T, — T,)gp =0.  (26)
J(Tkvqk) — |eqk(7_k)|2 +/ |6qk(3)|2 ds S KQ. ( p (1) ( p (1) 14 ( p (1)
0 Then for eaclp € &, limy—o0 |47 (t) — ypp(t)] = 0.

Hencele,, (1:)|? < Ko. From timer;, to 74,1 the errore,, () To prove Proposition 4.1 we will make use of the following
can increase at most at an exponential rate determined l@pma.

the maximum real part of the eigenvalues of the closed-loopLemma 4.2:Assume that A2), A4), A5), and one of the
system that results using COﬂtI’O”QFW Since the closed- conditions of Lemma 3.2 hold. Let be an admissible switch-
loop eigenvalues vary continuously withe 7 and by the ing signal andz{(¢) andy? (¢) be given by (24) with initial
assumption thaP is compact, there exisjs> 0 such that for condition(zo, wo). Similarly, let/ be an admissible switching
t € [r, mrq1) and allg, € P, |eg, (1)) < Kze!t=™) ey, (12.)]- signal andz?(¢) andy? () be given by (24) withr everywhere

It follows that for¢ € [rx, Txy1) replaced bys and with initial condition(z;,wy). If
leg, ()7 < Ko K262P(h1—7h), JLim d(o(t),5(t)) =0 (27)
Thus e, (,)(t) is a bounded function. Assuming that A2) andhen lim, .o [|zZ(¢) — «J(t)]| = 0 and lim, .o |y7(t) —

one of the conditions of Lemma 3.2 hold, it follows fromy?(t)] = 0.

Proposition 3.4 part 1) that is bounded and hence from the  Proof: Let v1(¢) = 27(¢) — z2(¢). Then

definition of ¢, that for eacty € P, ¢, andé¢, are bounded. . _ o 8
Now considerp € 5. By definition, there exists a subse- 01(t) = Aoty 75 (1) = Asype) s (*)

quence of switching times;,; and parameterg, such that + <LTo(t) — LT )7,@)

qx; — p asj — oo. Using the fact that/ is continuous NIow = N

on P yields lim; o, |J(Tkj,qkj) - J(Tkj,p)| = 0, and since = A’g(t)’g(t)vl (t) + (Ao(t)o(t) — A,g(t),g(t))a:;‘(t)
J(7k, qr,) is bounded byK, it follows that [~ [e,(s)|* ds < LT,y — LTa

co. The fact thate, and ¢, are bounded and, is square + <NTo'(t) _ NT’,a(t)>T(t)' (28)

integrable then yields by an application of a corollary to ) ]

Barbalat's Lemma [1, p. 19] that, — 0. So& € P*, i.e,, BY (27), (8), and Assumption AS)limy—.oo(As(t)o(r) —

Assumption R2) holds. Agyan) = 0 andlimy .oo(To (1) = Tsr)) = 0. Then sincer?
We believe there are many switching rules and performan@dr (f) are boundedim; —.o(Aq(t)o ()~ Aatype)S (t) = 0

measures that will also satisfy the assumption. However, wad

leave the de_5|gn of_ additional specific (practical) switching lim LToy — LTy r(t) = 0. (29)

rules as an interesting subproblem. t=00 \NT, 1y — NTp)

Now, 3 is an admissible switching signal, and by assumption

IV. SUFFICIENT CONDITIONS FORTRACKING PERFORMANCE  one of the conditions of Lemma 3.2 holds. Hence the system

Having established sufficient conditions for stability, wel = Agsd is globally exponentially stable. Thus from (28),
now consider the tracking performance of the switched closed- is the response of an exponentially stable system to inputs
loop system. The reduction and stability result of the previotigat converge to zero. It follows that
section indicates that undgr the conditions pf Lemma 3.2, if lim v (¢) = lim (a:;’(t) _ a:f(t)) —o (30)
esry — 0, then asymptoticallyy behaves likey7. Hence t—o0 t—o0
we need only show thayy adequately tracks the reference Finally
signal ». Now according to Assumption A3) the controllers v 3 v 3
I, are designed so that the time-invariant closed-loop systems ¥s () =y (8) = (0, Cory)a2 (1) = (0, Car) )5 (¥)
(I'»,%,) adequately track-. Thus it will be sufficient to =(0,Cu) — Coy )zl ()
pleter_mlne_condltlons under which the systéhy, ), ;) + (0, Cany) (22 (8) = a:f(t)).
inherits this property. _

To this end, fix an admissible switching signg(t). Then S0 by (30), (27), and Assumption AS) we have

for a fixed initial state(z(0),w(0),¢(0)) of the linear time- lim [y2(t) — y2(t)| = 0. (31)
varying system(3, (), I'or), E) let Q2 denote thew-limit t—o0 17? °
set, i.e., the set of positive limit points, of the resultant state O

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on February 22,2010 at 15:46:36 EST from IEEE Xplore. Restrictions apply.



602 |

Proof of Proposition 4.1:Let p € & and 3(¢) be an
admissible switching signal. Then

|y§(t) - ypp(t)| < |y§(t) -yl t)| + |yf(t) - ypp(t)| (32)

EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 5, MAY 1998

Finally combining (33) and (41) yield$im; .. |yZ(¢) —

Ypp(t)| = 0. u
Condition C1) requires, roughly, that if two predictors are

chosen “in the limit,” then they agree on thelimit set. This

Select3(t) € & so thats has the same switching timesis a natural condition that is easily seen to be implied, for
as o(t) and (27) is satisfied. To see that this is possibexample, by R2). Condition C2) is similar but more restrictive.

we argue as follows. For each integger> 1 there exists a
switching timer;,, such that for alt > 7, d(o(t),5) < 1/4.
Hence over each of the switching intervals, 7;41), with
Tk, < T < Tig1 < T, WE Can selecB(t) € & so that
d(o(t),B(t)) < 2/j. Thus (27) holds. It then follows by
Lemma 4.2 that

lim —yl ()] =0. (33)

t—oo

|y (t)

Now we examine the second term on the right-hand sigé

(RHS) of (32). The signal,,(t) is given by (7). Letvy(t) =

zpp(t) — 28(¢). Thenwvy(0) = 0 and fort > 0

. L1, - LT,

va(t) = Appxpp(t) - A,@(t),@(t)xg( )+ <NT Njgﬁ((tt))> ()
(34)

o2 () + (App — Apyay)ws (1)

_+ <LT LT@(t)> ).

NT, — Ny
By C1), at every statéz, w, ¢) € 27, and for eaclp,q €
Crw = Cyw. (35)
In addition, by C2) for allp,q € & and (2, w, ¢) € QF, (26)
holds. Then (8), (26), and (35) imply that for eaghy € &
and (z,z,w,¢) € Q2
>g</> =0.

() +

In particular, sinces(t) € &, for eachp € & and
(z,z,w,¢) € Q

L1, - T)

N(Tp - Tq) (36)

(Cp — Cg(t))w =0 (37)
(App = Apr)pr)) <;) < ((g %((t)))) )g</> =0. (38)

Now zZ(t) converges toz?(t) [see (30)]. ThuszZ(t)
converges td2? and hence by (37), (38), and continuity

L(T, - T,
Jim (A — Ay, HOE: < N((ﬁ B ﬁ((tt>))))7,(t) =0
Bt)=o.

tli_glo((), Cp - C,@(t))aj
(39)

Combining (34), (39), and the stability of the matti,,,
we conclude that

th_glo v2(t) = th_glo (xpp(t) - xf(t)) =0. (40)
Write
us (8) = upp(t) = (0, Cpqe)al (t) = (0, Cp)azpp (1)

= (0, Cary = Cp)x (t) =
Hence using (39) and (40)

(0, Cp)va2(t).

Jim [y5(8) = ()] = 0.

It requires that if two controllers are chosen “in the limit,” then
they agree on the-limit set. Unlike C1), there is na priori
reason to suggest that this will be a natural consequence of the
switching rule. Hence it is imposing an additional constraint on
the model/controller pairs. Of course, the problem is that one
may not know thev-limit set in advance, in which case it may
be necessary to check that (26) is satisfied on a larger set that
is known to contain the possible-limit sets. Note that when
e assumptions of Proposition 3.4 are satisfied, part 1) of the
proposition implies that C2) can be verified by examining the
possiblew-limit sets of the nonlinear switched system. In fact,
for some simple cases C2) can be verified quite easily in this
way as shown in the examples after the Proof of Theorem 4.3.
Our main result is that the standard assumptions together
with R2) and C2) are sufficient to ensure that the output of
the nonlinear switch system(¢) asymptotically tracks the
reference signat. Indeed, the following theorem indicates
that the asymptotic tracking performance of the closed-loop
switched system is as good as one of the time-invariant linear
systemgX,,,I',), and by Assumption A3) this is adequate.
Theorem 4.3:Assume that A1)-A5) and either of the con-
ditions of Lemma 3.2 are satisfied. Furthermore, assume that
for each possible initial condition of the nonlinear switched
system the resulting switching sequence is such that R2) and
C2) are satisfied. Then the closed-loop switched control system
(11)—(17) satisfielim: oo |y(t) — ypp(t)| = 0 for somep € P
with e,(¢) — 0. Hence asymptotically adequately tracks.
To prove Theorem 4.3 we will use the following lemma.
Lemma 4.4: Assume that A2)-A5), R2), and one of the
conditions of Lemma 3.2 hold. Then for any initial state
(20, 20, wo, ¢o) Of the nonlinear closed-loop switched system
the resultant state trajectofy(¢), z(t), w(t), ¢(t)) is bounded
and has a nonempty-limit set €. Furthermore, for all
(@1, 21,w1,¢1) € Qand allp, g € 7, we haveC,w; = Cyw.
Proof: By assumption, the signalg(¢) and r(¢t) are
bounded. Since one of the conditions of Lemma 3.2 holds
and R2) holds, it follows from Proposition 3.4 that the signals
z(t), w(t), z(t) are bounded. Thus the set of limit poirfis
ast — oo of the joint signal(z(t), z(¢), w(t), ¢(t)), i.e., the
w-limit set of the trajectory, is nonempty.
By continuity, for eachp € P* and (z1, z1,w1,¢1) € £,
Cz1 = Cpwy, i.€., any predictop € P* has zero error of.
This in turn implies that for eacp, ¢ € P*

prl = qul (42)

i.e., all predictors inP* agree orf2. Since, by R2)5 C P*,
the same holds fop, ¢ € 5. O

Proof of Theorem 4.3FFix a pair of initial conditions
(%o, ¢0). This determines the switching signa(t) and the
bounded reference signa(¢). By Lemma 4.4 the state tra-
jectory #(t) of (11) is bounded and the-limit set Q is
nonempty.

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on February 22,2010 at 15:46:36 EST from IEEE Xplore. Restrictions apply.



HOCHERMAN-FROMMERet al. CONTROLLER SWITCHING BASED ON OUTPUT PREDICTION ERRORS 603

r e Yo v | u by y
- P S aljk

Fig. 2. Set-point control system.

By Lemma 4.4 for all(zy, 21, w1, ¢1) € Q@ and allp, g € 7, . Y0

we haveC,w; = C,w;. By Proposition 3.407 = Q=%. — T —?L—( :— .

Hence for eactp,q € & and each pointz,w,¢$) € QF,

Cpyw = Cyw, i.e., condition C1) holds. ,
Let # = (z,z,w). We let y(¢) denote the output of the I

nonlinear closed-loop system with initial conditian y,,(t) _

denote the output of the LTI systefi,, [',,) driven by and Fi9- 3. Set-point control system for Example 2.

with initial condition (z, w), andy? (¢) denote the output of the

linear time-varying systert®, (), I',()) for a fixed switching y = ¢,z and the controller realizatiol', is obtained by

signal o to the inputr and with initial condition(z,w). settingv = v,
Let p be any element of. Then under the fixed switching By the problem setup and the constructiondef, Assump-
signal ¢ tions A1)-A3) hold. We assume that the parameterization of

the models and controllers satisfies Assumptions A4) and A5).
l(t) — vpp(] < |u(t) = wZ(®)] + |67 () — ypp(t)|-  (43)  That Condition C2) holds in this case can be verified by
direct computation. First, it is easy to see that ¢hémit set

By Proposition 3.4, the first term on the RHS of (43) convergegr the system(x,,[',) is just the single equilibrium state
to zero ast — oo. We have shown that C1) holds and byroco = —AZ!der, and this is independent f Moreover, in

assumption so does C2). Hence by Proposition 4.1, the secef¢hdy state = r, v, = 0, ande, = 0. So f,Azlde = 0

term on the RHS of (43) converges to zerotas: oo. Thus gnd pAZ e = —1.

limy oo [y(t) — ypp(t)| = 0 as claimed. 0  Let o be a rp-admissible switching signal. Then by
As mentioned above, in general it may be difficult to checkemma 3.3, under either of the conditions of Lemma 3.2,

Condition C2) since it requires knowledge of theimit sets every state trajectory of the switched SystéB, (), Ly (1))

of the switched closed-loop system. Nevertheless, in sognverges to the-limit set Q(r) = #2. By Proposition 3.4

simple but interesting cases it is possible to check the conditig have** = Q(r). Thus to check C2), we just need to

by direct computation as we demonstrate in the followingheck that (26) holds at the poimge. Using fpAgtde =0

examples. and ¢, Aglde = —1, gives
Example 1: The set-point control problem illustrated in
Fig. 2 is studied in [13]. We are given a family of SISO model Hywd + 5pCpud + Tpr
transfer functions, (s)/a,(s) and a family of SISO controller = —fpAZtder + gpep Agtdor + gpr
transfer functionsy,(s)/p,(s) such that for eacp € P, the = gp(cpAGtde + 1)r

control system illustrated in Fig. 2 with = p is stable and

for any constant reference signallim;_, . |y(t) — 7| = 0.
As shown in Fig. 2, the actual plant inputis generated by Hence for eactp,q € P (H, — H))zZ + (Sp — S;)Cpz& +

an integrating subsystem, and the control signial generated (7, — 7;)r = 0, i.e., C2) is satisfied.

by a switched controlled’, driven by the tracking error It follows from the above and Theorem 4.3 that any parame-

er(t) = r — y(t). In our notation,X is the cascade of the terization of the controllers for which A4) and A5) are satisfied

integrator and the actual plant. Thus the controller output aaéld any switching rule satisfying R2) and having a sufficiently

=0.

(augmented) plant input is denoted by large dwell-timerp will ensure that the state of the closed-loop
It is shown in [13] that a common state-space representationitched system is bounded atich, ., |y(t) — 7| = 0.
of the family of predictors and controllers takes the form Example 2: Consider the set-point control problem illus-
trated in Fig. 3. We assume the same conditions as the previous
tc = Aczc +dcy +bcv + heer (44)  example.
Vg = fqTc + gger (45) In our notation 2 is the cascade of the plant and integrator.
ep = cpTc — 1. (46) _Hen_ce the control signal is. The controller/predictor system
is given by
Here Ac, bc, de, he, and z¢ are parameter independent #(t) = Fa(t) + Gy(t) + Lu(t) + Rr
and A¢ is asymptotically stable. In our notation, (44)—(46) is (#) = Hy2(t) + Spu(t) + Tyr
equivalent to a common state realization@f and L', with U{’ - %4 P!
M=F = Ac,andC, = ¢,, H, = f,, S4 = —g,, and w(t) = Mw(t) + Nu(t) + Ky(t)
T, = g, Thus the model realizatiol,, is obtained by setting ep(t) = Cpw(t) — y(t).
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Consider the syster(®,,[',). By assumption, this systemw-limit set Q2. In addition, by assumptions A2) and A3), for
is stable. Hencéim, ... v,(t) = vy> =0forallp e P,and eachp € P, the closed-loop systeniX,,I';,=) satisfies
the stationary point of théx,,,I',) system is given by limy o0 [ypp(t) — 7(¢)] = 0, and for each initial state of the

reference signal generator, the state of this system converges
2 = —F‘l(Gr + L + Rr) =-FYG+Rriz~ toa uniquew-limit set €2,,,,. .
_ _ Lemma 5.2:For any ¢ € & there exists a point” =

0o _ 1 0 N o Ly & 00 q
wp = =M (N + Kr) = =M Kr S w (29, 2%, ¢%) € Q and a timer > 0 such that the trajectory
of the closed-loop system starting frosh at ¢+ = 0 and using
the fixed controllery stays in{} over the time intervalo, 7).

Proof: Consider the joint signalo(t), x(t), z(t), w(t),

Note that the fixed point is independent;ofin addition

v = Hpz™ + (5, +Tp)r =0 #(t)). Sample this signal at the sequence of switching
and times 7, £ > 1. The resultant sequence of samples
e = Cpw™ —7 =0. (47) {0k, Ty 21, Wi, P ), k& > 1} lies in a compact metric space

and hence has a nonempty set of limit poifts Clearly, if

= i 04 o ,0 0 40
Let ¢ be any admissible switching signal. Then und € 7, then there exists’ = (z°, 2%, w’, ¢°) € {2 such that

o 0 0 0 . . . . .
any of the conditions of Lemma 3.1, every trajectory ol N ’f}’gje;]ﬁt()e fi(zﬁtiinz(zg?:,;?tiﬁ(g’sx;ﬁf]féfj]7t?é1')éctor
the switched systen{,,I';«)) converges to the point:J = : -quence P ! y
Q(r) = (2, w™). Thus to check C2) we need to Showconsstlgng of powgts at swncghmg times, sgch thato; — ¢,
that (26) is satisfied at this point. Using (47), for plie P, ™/ > 3 "= o (07 7 % ande; — ¢ he tra
Hyz™ + S,Cow™ + Tyr = Hyz + Syr +Tyr = 0, 8. For each points; = (z;, z;, w;, ¢;) consider the trajectory
Condition C2) is satisfied. segment

It follows from the above and Theorem 4.3 that any parame- _

terization of the controllers for which A4) and A5) are satisfied 0;(t) = (2(t), 2(), w(t), #(1), te [T’“j’T’“j“)
and any switching rule satisfying R2) and having a sufficientl
large dwell-timerp will ensure that the state of the closed-loo
switched system is bounded ahdh;_... |y(t) — | = 0.

f the closed-loop system that starts sgtat time 7, and
hasa(t) = oy, for t € [, 7;41). Each of these functions
is a segment of a trajectory of an LTI system. Hence, by
time shifting and restricting attention to an interval of time
of duration 7p, we can consider the trajectories to be de-
fined over the time intervalo, 7p). Similarly, let §7(t) =

An_ mterest.lng additional rgsult can be .obta.med when V_‘(‘%(t),z(t),w(t),&(t)), t € [0,7p) denote the trajectory of the
restrict attention to asymptotic exact tracking, i.e., we reqw@osed_mop (LTI) system starting from the initial conditieh
lim; .o [y(t) —7(£)| = 0. In this case we will assume that the, usingo(t) = q.
following additional mild restriction holds. We claim that the sequence of functiofs converges

Assumption A6) The model&l, have no zeros in com- pointwise over[0,7p) to the functionf? asj — oc. This

mon with the eigenvalues of the referenceollows by continuity with respect to the initial condition of
signal generator. the solutions of (2) and by the continuity of the solutions of

Our second main result is the following. In the case dhe remaining linear ordinary differential equations (0.d.e.’s)
asymptotic exact tracking in order to conclude that the nowith respect to the initial condition and the parameter
linear switched system will asymptotically exactly track the It follows that all points on the curvé?, ¢t € [0,7p) lie in
reference signat(t), it is only necessary to verify the struc-{2. O
tural conditions A1)-A6) and the switching rule constraints Lemma 5.3:For eachp,q € 7, if (z,w,¢) € Qg then
that R2) and one of the conditions of Lemma 3.2 hold. 16w = Cjw.
particular, it is not necessary to verify that conditon C2) Proof: Let p,q € . Then by Lemma 5.2 there exists
holds. As we show in the proof of the theorem below, C2 points® = (2,20, w°, ¢°) € @ and a nonempty interval
will hold. [0, 7) such that the trajectory of the switched system starting

Theorem 5.1:Consider an asymptotic exact tracking probfrom s at ¢+ = 0 and using the fixed controlley stays in
lem for a reference signal given by (2). Assume that Conditiofis for the time interval[0, 7). Now, the w-limit set of the
Al1)-A6), R2), and one of the conditions of Lemma 3.8ystem(X,), (), Z) is Q7¢. Hence there exists a point
hold. Then the closed-loop switched control system satisfieg’, w°, ¢°) € Q¢ and a nonempty time intervi, 7) such
lim; o [y(t) — 7(t)] = 0. that the trajectory of the LTI systeft,, I'y, =) starting from

To prove Theorem 5.1 we will make use of the followingz°,w°, ¢°) att = 0 remains inQ**-¢ over the time interval
preliminary lemmas. Assume that A1)-A6), R2), and one ¢f, 7). Denote this curve byd,(t) = (z,(t), @, (t), d(t)),
the conditions of Lemma 3.2 hold. Fix an arbitrary initiat € [0, 7).
condition for the switched closed-loop system andiéte the  Sincef,(¢) lies inQ**?, by Lemma 4.4(C),— Cy ), (t) =
switching signal from this initial condition. By Proposition0 for all p € & andt¢ € [0, 7). But this trajectory segment is
3.4 and the model for the reference signal, the trajectoggnerated by an LTI system; hen@€, — C,)@,(t) = 0 for
(z(t), z(t), w(t),$(t)) is bounded and hence has a nonempsll ¢ > 0. Now, in the limit the above trajectory converges to

V. ASYMPTOTIC EXACT TRACKING
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the uniques-limit set 2,,. Thus by continuity, for every point

(z,w, ) € Qqq, Cpw = Cyw. O
Lemma 5.4:For all p,q € &, Qpp = Qqgq-

Proof: In view of the assumptions on the reference signal

generator, without loss of generality we can represeas a
finite sum of sinusoids. Each systeih,,1';,) is LTI. Hence,

605

r o4 1 v u y(®)

Fig. 4. Set-point control system, Example 3.

by superposition it will be enough to prove the result assuming

that » is a single sinusoid.
Suppose that(t) = r,e*“<*. Since the systemix,,I',) is

exponentially stable, for all initial conditions the state traje

tory settles into a periodic orbit of the for,(t), wy(t)) =
(Zp(iw,), Wp(iw, ) )e™t. Here z,(iw,) and w,(iw,) are com-
plex numbers that depend on the real constantSimilarly,
up(t) converges to a periodic signal of the form,(t) =
I, (iw, et andy,,(t) converges to-(t).

Proof of Theorem 5.1:The initial state(xo, zo, wo, ¢o)

Qf the closed-loop switched system determines: the state

trajectory¢(t) of the reference signal generator, the reference
signalr(t), the switching signak(t), and the state trajectories
z(t), w(t), and z(¢) of the controller, predictor, and the
plant, respectively. By the assumptions of the theorem and
Proposition 3.4, all of these signals are bounded and.the

Using (3), (5), and Al), we find that we have (48), aimit set Q of the trajectory(x(t), z(t), w(t), #(t)),t > 0,
shown at the bottom of the page. Then using (48), the fdétnonempty. Let2**»¢ (respectively,2*:*") denote the set

thaty,, = Cpw,, and that in steady statg,, = r, yields
To = Cpliw,d — M) Ny (iw,) + Cpliwed — M) Kr,.
(49)
Let H,(s) denote the transfer function of,. Using the

of limit points of the signal(z(t),w(t), ¢(t)) [respectively,
(2(t), w(®))].

Let o(t) be the fixed switching signal defined above.
Then, by the assumptions of the theorem, Lemma 3.2, and
Proposition 3.4, theu-limit set of the time-varying system

formula forH,,(s), Assumption A1), and the Matrix Inversion(zs(t)ja(t)’ 2) is Q5w

Lemma we find

Cpliw,I — M)™LN
1= Cpliw,d = M)"'K’

Hp(iw,) = (50)

By A6), ¥, has no zeros that are eigenvalues of the referen%%ﬁ(t)’
system. Hence the numerator in (50) is nonzero. Thus usin

(49) we can write

1 - Cpliw,] = M) K
Coliw, ] — M)~IN (1)

Up(iw,) =

Let p,g € &. Then by Lemma 5.3,Cpw,(iw,) =
Cywp(iw, ), 1.e.,

Cypliwod — M) Na,(iw,) + Cpliw,I — M) ' Kr,
= Cyliwod — M)™ N, (iw,) + Cyliwed — M)~ Kr,.

Combining this with (49) we have
7o = Cyliw,I — M) ' Ny (iw,) + Cyliw, I — M) 1 Kr,.
On rearrangement and comparison with (51) this yields

1 - Cyliwed = M)T'K (i)
Cyliw,d — M)=IN '°~ ")

Up(iw,) =

Thus for eachy, q € 7, 4,(iw,) = tg(iw,). It then follows
from (48) that for eachp,q € &, (Z,(iw,), Wp(iw,)) =
(Zg(iwo), Wq(iw, ), i.€., Qpp = Qqq.

Let 3(t) be a switching signal taking values iw,
having the same switching times as(t), and satisfy-
ing lim;_...d(o(t),5(t)) = 0. By Lemma 4.2, for any
initial condition, the trajectories of(X,),I5(),Z) and
Ls),E) converge ast — oc. By Lemma 5.4, for
chp,q € 7, Q) = Qg = Q. Thus, by Lemma 3.3, the
system(X5.), '), Z) has the globally attractive prb@.
Thus (X,1), I'5(1), Z) has the globally attractive orbse.

Finally we show thalim;_, . |y(t)—r(t)| = 0. By Assump-
tion A3) and the requirement of asymptotic exact tracking, for
eachp € &, y,,(t) = r(t) on 2. However, by Lemma 5.3,
for eachp, g € 5, C,w = C,w for each point(z,w, ¢) € Q.
Thusy?(t) = 7(t) on 2. By R2) and Proposition 3.4 part (1),
this implies thaflim; .. |y(¢) — r(¢)| = 0. O

We illustrate Theorem 5.1 with the following example.

Example 3: Consider the set-point control problem illus-
trated in Fig. 4. Assume, as in Example 1, that we are given a
set of SISO models and a set of SISO controllers, such that for
eachp* € P the controlled system with = p* is stable, and
for any constant reference inputlim;_, .. |y(t) —r| = 0. The
true plantX,- is one of the models ang" is unknown. We
assume that none of the models has a zero at 0. This example,
although similar to Example 1, requires a different (and more
difficult) analysis.

The plant inputu, ;) is generated by a switched controller
I'5(1), Whose input signaky(t), is generated by an integrating
subsystem driven by the tracking error y(t).

In our notationI is the cascade of the integrator and the
controller. A common state-space realization of the system

(30

Wp (W, )

)= (i

(iwod — F)~1(G + R)) <a,,(zwo) )

(48)

(iw,I — M)LK 1
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above is given by

2(t) = Fz(t) + Lu(t) + G(r — y(t))
up(t) = Hpz(t)
w(t) = Mw(t) + Ky(t) + Nu(t)

ep = Cpw(t) —r.

Assume that A1)-A5) are satisfied by the problem setup,
that one of the conditions of Lemma 3.2 holds, and that the
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From (53) and (54) it is easy to show that for any switching
signal o :
the state transition matrix ofl,, satisfies

[0, o0) — P with dwell time no smaller thamy,

@t )] < e® M1 W > >0

{A,, - %} € (0, )]

(52) where

A= inf
peP

switching rule ensures that condition R2) holds. Stability anthat is, A, is exponentially stable with a decay rate(see

boundedness of the switched nonlinear system then folloy])

by Proposition 3.4. Since we have assumed that the modelg\ different approach can be based on the conditions for
do not have a zero at the origin, A6) is satisfied. Hence Ryability of “slowly time varying systems”; see, e.g., [17].
Theorem 5.1]imy o [y(t) — r| = 0. This latter result can Assume thatA,,(t) are bounded byX, then we have the
also be shown by direct computation of the fixed points @bllowing.

the systemgY,, I',). However, in this case these fixed points |emma 6.1 [3], [6]: For A, of sizen x n satisfying A2)

depend orp € P, and the analysis method used in Examples
1 and 2 does not apply.

VI. CONCLUSION

n—1
IIGA”WHS(E) I Yrt > 0
€

We have presented a simple setting in which to analy$@ every e € (0, 2X). o _
the stability and tracking performance of predictor-based con-Using (55), exponential stability is assured if the boutid
troller switching rules. Our approach is to relate contrds smaller than(2¢®7o)~".

performance to prediction performance by separating the out-
put into an exogenous input response and an error term.

Our first main result, Theorem 4.3, gives a set of sufficient
conditions under which good asymptotic tracking performancey
of the switched system is achieved. As a special case, this
results leads to a simpler proof of a recent result of Morsé&!
[13], concerning a set-point control problem.

Our second main result, Theorem 5.1, shows that in thil
special case where asymptotic exact tracking is required an
the plant has no zeros in common with the poles of the refer-
ence signal generator, the main assumption of Theorem 4.3
in fact always satisfied so that the switched system achieves
asymptotic exact tracking. (6]

APPENDIX 1 [7]

Letp, =o(n)eP. Forri_i <p<n<- <7 <t<
7,41 the state transition matrix ofl,.(¢) is (8]
; 9]
B(t, ) = erims =) T oo (h=mim1) L Apin, (7=

kg-l (10]
(53)
Since A,,, p € P are stable with stability margiry, it is
possible to find numbers, > 0 and A, € (0,~) for which

(11]

et < elr=ND t>0,  peP (54) 02
(see [13] and [4]). In particular [13]
ez (Dt < e Tt >0, peP (55) (4]
[15]
where
16
a = sup{ap}, To > sup {%} (el
peEP peEP )‘p
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