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Abstract: A dynamic recurrent neural network 
(DRNN) that can be viewed as a generalisation 
of the Hopfield neural network is proposed to 
identify and control a class of control a c n e  
systems. In this approach, the identified network 
is used in the context of the differential geometric 
control to synthesise a state feedback that cancels 
the nonlinear terms of the plant yielding a linear 
plant which can then be controlled using a stan- 
dard PID controller. 

1 Introduction 

Recent advances in the understanding of the working 
principles of artificial neural networks (ANNs) has given 
a tremendous boost to the applications of these model- 
ling tools for the control of nonlinear systems [l, 21. 
Most of the current applications rely on the classical 
NARMA approach; here a feedforward network is used 
to synthesise the nonlinear map [3-51. This approach, 
powerful in itself, has some disadvantages: 

(a) the network has as its inputs a number of past 
system inputs and outputs, so to find out the optimum 
number of past values a trial and error process must be 
carried on 

(b) the model is naturally formulated in discrete time 
with fixed sampling period, so that if the sampling period 
is changed the network must be trained again 

(c) the problems associated with the stability of these 
networks are not clearly understood 

(d) the problem of discrete-time nonlinear control is 
not fully understood and there is not a framework avail- 
able for analysis. 

Along with the developments in the area of neural net- 
works, tremendous strides have been made in the area of 
nonlinear control analysis using differential geometric 
and algebraic techniques [6, 71. The tools for analysis 
provided form a natural basis for the analysis of dynamic 
neural controllers; it is here that dynamic recurrent 
neural networks (DRNNs) come into their own, for these 
can be described by sets of differential equations and can 
be analysed within a differential geometric framework 
C8,gI. 

The control strategies that can be evolved using differ- 
ential geometric techniques involve the plant linearisa- 
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tion using what is known as linearising state feedback. In 
this approach, the key principle is the cancellation of 
nonlinear terms yielding a linear plant which can then be 
controlled using standard PID controllers; this particular 
strategy was proposed by Kravaris and Chung [lo] and 
it is known as globally linearising control (GLC). 

In this work a nonlinear plant is identified with a 
DRNN. Then the network is used in two ways 

(i) to calculate the linearising state feedback that 
cancels the nonlinear terms of the plant 

(ii) to observe the plant and generate the state vector 
needed in the linearising feedback. 

2 Mathematical preliminaries 

This Section presents the concepts of relative degree, 
input-output linearisation and the GLC structure for 
continuous time, single-input/single-output (SISO), 
nonlinear-control affine systems. 

Consider the nonlinear-control affine system 

il =f1(x,, ... 1 x.) + g,u 
i" =fJx1, ... 1 X")+ gnu 

y = 4x1, . f ., x,) 
These equations can be written in compact form 

(2) 
i = f ( x )  + gu 

Y = h(x) 
where x E R", U E R, y E R,f(x) and g are vector fields and 
h(x) is a scalar field, i.e.f(x) E R", g E R" and h(x) E R. 

2.1 Relative degree 
The relative degree r for any SISO control system is 
defined as the number of times that the output y( t )  must 
be differentiated with respect to time in order to have the 
input u(t) appearing explicitly. 

If the system described by eqns. 2 has relative degree 
r = 1, the first derivative of the output y(t) is given by 

jJ = L, h(x) + L, h(x)u 
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where L,h(x) and L,h(x) are known as the Lie deriv- 
atives of the scalar field h(x) in the direction of the vector 
fieldsf(x) and g, respectively, i.e. 

If L,h(x) = 0 and the relative degree is r = 2, the second 
derivative of the output f i t )  is given by 

j ;  = L; h(x) + L, L, h(x)u 

where 

In general, the nonlinear system of eqn. 2 is said to have 
relative degree r if 

L,L)h(x)=O i = O ,  ..., r - 2  

L, Lj- "x) # 0 

with Lyh(x) = h(x). An important case occurs when the 
relative degree r is equal to the number of states (r = n). 
The output and its derivatives can be written as 

(3) I Y = h(x) 
j = L, h(x) 
j ;  = L; h(x) 

y'"' = L; h(x) + L, L;- 'h(x)u 

. . .  
y ( n - l )  = LY- h(x) 

2.2 Input-output linearisation 
The goal of the input-output linearisation technique is to 
cancel the nonlinear terms of the plant, using a state feed- 
back, in order to have a linear dynamics between a new 
input v(t) and the actual plant output fit). 

If the input U for the system described by eqns. 3 is 
defined as 

{U - LYh(x) - B,L;-'h(X) 

(4) 

then the last equation of eqns. 3 becomes, 

y'"' = U - /31L;- 'h(x)  - ' ' - / 3 -  1L, h(x) - 8. h(x) 
i.e. 

+ 8 , - 2 j i + 8 . - I j , + B , Y = ~  (5 )  y(n) + ply(n- l )  + . . . 
The nonlinear terms L, L;- 'h(x), L;h(x) have been can- 
celled by the state feedback (eqn. 4) and the resulting 
system is linear between the new input U and the output 
y. The parameters bl, . . . , 8. are based on the desired 
input-output characteristic; this means that the U - y 
system can have arbitrarily placed poles. 

2.3 Globally linearising control 
After linearising the system defined by eqns. 2 with the 
state feedback (eqn. 4), one can use an external PI loop 

= k,{r(t) - fit)) + ki {r(t) - W) dt (6) sb' 
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to force the output At) to track a given desired trajectory 
AA. This control structure was uroDosed in Reference 10 
and it is called the globally l;ne&sing control 
structure; see Fig. 1. 

Fig. 1 Globally linearising control (GLC) structure 

The design procedure using the GLC structure is 
simple: compute the linearising state feedback (eqn. 4) 
from the system model and then tune the PI controller 
(eqn. 6). 

3 Dynamic recurrent neural network 

ANNs consist of many interconnected simple nonlinear 
systems called neurons. Generally speaking, neuron 
models can be divided in two basic types, static and 
dynamic. A dynamic neuron is the one whose output is 
described by a differential equation (see Fig. 2). A DRNN 

a 

1 ........ 1 ,........ A 
xt4 X I  

b 

Fig. 2 Dynamic neuron model 
(I The neuron is depicted in detail; note the differential equation for the output xi 

N 

t = - x i  + E~,,4(Xd + Y,U 
1- * 

b This simplified picture is used as the building block for a dynamic network 

is a network of dynamic neurons with forward and back- 
ward connections (see Fig. 3). 

In this section it is demonstrated that a DRNN can 
approximate control affine systems of the class (2). 

Theorem 1 ;  The dynamic recurrent neural network 

(7) 
where XE", T e B N x N ,  W e R N " ,  r f R N X 1  and 
4x1 = {u((xl), . .., u(,Y,} can approximate the nonlinear 
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system (eqn. 2) 

i =f(x) + gu 

Y = h(x) 
The number of units N > n. 

Y =x, 
Fig. 3 Dynamic recurrent neural network ( D R N N )  

Proof: The nonlinear system (eqns. 2) can be written as 

i = -AX +f0(x) + gu 

Y = 4x1 
where 

f0(x) = AX + f ( x )  A E %" " 
It is now well known that feedforward neural networks 
with one hidden layer can approximate any nonlinear 
function with arbitrary degree of accuracy [11-131; in 
Reference 14 it is stated that a feedforward neural 
network can be used to approximate the mappingf,(x) 

(9) 
where C E W x N 1 ,  D E  !RNlxn ,  0 E XN1 and u(x )  = {u(xl), 
..., u(xN1)}. NI is the number of hidden neurons in the 
feedforward network. 

f0(x) = CO(DX + 0) 

Substituting eqn. 9 in eqn. 8 

Define the new variable ( and its derivative 

( = D x + e  (1 1) 

[ = D i  (12) 
Substituting eqn. 11 into eqn. 10 and eqn. 10 into eqn. 12, 
the following dynamic recurrent network is obtained 

i = -AX + CO(() + gu 

[ = -DAx + DCu(() + Dgu 

Y = h(x) 
In matrix form, 

This can be written as 

x = -TX  + WO(X) + r u  
Y = h(x) 

where 

(14) 
X E % ~ ,  T e ! R N x N ,  and u((x)= 
(u(x1), ..., u(xN)}.  The total number of neurons is 
N = N l + n .  
The network (eqn. 13) with T = I and no restrictions on 
the weight matrix W is known as the generalised Hop- 
field network and was first proposed by Hopfield [IS] in 
the context of associative memories. This network is 
described by 

i =  --x+wu(x)+ru 
Y = h(x) 

(15) 

where X E % ~ ,  r e x N x N ,  rexNx1 and 

The computer simulations have shown that the model 
of eqn. 15 is more general than eqn. 13 and also the 
learning is faster. In this paper the identification and 
control of nonlinear systems is carried out using the 
model of eqn. 15. 

4 

In Section 2 it was shown that the relative degree is a key 
concept in order to linearise systems of the class (eqn. 2). 
In the following, it is demonstrated that a DRNN has the 
capacity to identify not only the dynamics of systems 
(eqn. 2) but also their relative degree. 

There are several patterns to obtain any relative 
degree with the dynamic neural network (eqn. 15); in this 
paper one of them is shown [9] when y i  = 0, Vi # r. 

Theorem 2: The recurrent neural network 

4x1 = {'((xl), ' ' ' > q ( x N ) } .  

Relative degree of the DRNN 

where 
N 

.f<:c~) = -xi + 1 wija(xj) 

ŜX,y) = y i ,  i = 1 , .  .., N (17) 

h(x) = X I  

j =  1 

can have any desired relative degree r ,< N as follows: 
(i) r =  l , ify,  # O  

(ii) r = 2, if yi = 0, V i  # 2 and wI2 # 0 
(iii) r > 2, if yi = 0, Vi # r and oij = 0, 

i = 1 ,  ..., r - 2 ; j  = i + 2, ..., N 

The case when the relative degree is infinite is not con- 
sidered. This situation occurs when the input does not 
affect the output, i.e. the system is autonomous. 

Proof: The proof of this theorem is illustrated by way of 
an example. Consider the following four-state (i = 1, 2, 3, 
4) neural network 

4 

x i  = - - x i  + wiju(xjX3 + y i u  
j =  1 

Y = 4 x )  = X I  Y = h(x) 
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In this model 
4 

&) = -xi + 1 wij dxj) 

P d x )  = Yi 
j =  1 

Recall the mathematical definition of relative degree 
(Section 2.1): 

(i) Condition: y 1  # 0, y 2  = 0, y 3  = 0, y4 = 0 

LpI;(x) # 0. Then r = 1. 

(ii) Condition: y ,  = 0, y 2  # 0, y 3  = 0, y4 = 0 

L,/;(x) = Y1 

4 L 3 1 ; ( x )  # 0 if w12 # 0. Then r = 2. 
(iii) Condition: y1 = 0, y2 = 0, y 3  # 0, y4 = 0: 

L,L,I;(x) = o i f w 1 3  = o 
L f W  = { - 1 + wi i~’(xi)}f i (x)  

L3 = w13 u’(X3)Y3 

+ 0 1 2  U ’ ( x 2 ) f 2 ( x )  + w14‘‘(x4)f44(x) 

LpLjYx) = Ol2a’(X2)w23~’(x3)Y3 

+ w14 u’(X4)w43 u‘(x3)Y3 

L, Lf h(x) # 0. Then r = 3. 
(iv) Condition: y 1  = 0, y 2  = 0, y 3  = 0, y4 # 0, ~ 1 3  = 0 

Lf h(x) = { - + 0 1  lU‘(x1)b14 O ’ ( x 4 h 4  

+ O 1 2  u’0!2)w24 u’0!4)Y4 

+ 14 u’(x4)044 U‘(X4)?4 

L ~ L ; I ; ( ~ )  = o if col, = 0 w24 = o 
Lq4x) = wllu”(xl)f3x)  

+ { -  1 + ~ l l ~ ’ ( x 1 ) 1 2 f l ( x )  

+ { - 1 + % ~ ’ ( X l ) J ~ 1 2  a ’ (x2 ) f2 (x )  

+ 0 1 2  4xz)w214xl ) f l (x)  

+ w12 4 x 2 ) 0 2 2  O’(X2) f2(X)  

+ w12 ‘ f ( x 2 b 2 3  u’(x3)f3(1() 

L p L q h ( x )  = w12‘’(x2)023 u’(x3)w34‘’(x4) 

LpL;h(x) # 0. Then r = 4. 

r = 1 for y1 # 0, y 2  = 0, y 3  = 0, y4 = 0 
r = 2 for y1 = 0, y 2  # 0, y 3  = 0, y4 = 0 and w12 # 0 
r = 3 for y1 = 0, y 2  = 0, y 3  # 0, y4 = 0 and o13 = 0 
r = 4 for y1 = 0, y 2  = 0, y 3  = 0, y4 # 0 

Finally, it is concluded that: 

and w13 = 0, w14 = 0, w24 = 0. 

5 Stability of the DRNN 

After the dynamic network has been trained, the model is 
used in two ways: (a) to calculate the linearising state 
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feedback (eqn. 4) that cancels the nonlinear terms of the 
plant; and (b) to obverve in open loop the plant and gen- 
erate the state vector x needed in the linearising feedback. 
Then it is important to determine if the network as an 
open loop observer is stable, so the linearising feedback 
will work properly. 

The stability of the DNRR can be examined with the 
first method of Liapunov; in this method each equi- 
librium state is investigated separately. 

From eqn. 15, the autonomous dynamic network is, 

li = - 2  + W 4 x )  (18) 

where x = Cxl, . . . , xNIT, W E SNxN, ~ ( x )  = C4xl), . . . , 
4xN)IT. One equilibrium point ,y* is the solution of 

Expanding the right-hand side of eqn. 18 in Taylor series 
about the equilibrium state x* and deleting the higher- 
order derivatives, we obtain 

(19) 

x* = Wu(x*) 

i = [ - I  + H ] z  

with 

We can write eqn. 19 as 

i = A z  
where 

A = - I + H  

A [ 
h. .  = w . . g .  

i = l ,  ..., N j = 1 ,  ..., N 

hl l  - 1 . . .  
hii - 1 h:N ] 

hNN - 1 . . .  
hNl 

‘J ‘J J 

Lyapunov showed that, if all the eigenvalues of the 
matrix A in eqn. 20 have nonzero real parts, then the 
stability of the equilibrium point x* of the original system 
(eqn. 18), is the same as that of the equilibrium point 
z = 0 of the linearised equation (eqn. 20). It is possible to 
establish bounds for the real part of the eigenvalues of 
the matrix (eqn. 21) using the matrix measure [16]. 

5.1 Matrix measure 
A normed linear space is an ordered pair (X, 11 ‘ 1 1 )  where 
X is a linear vector space and 11 : X -+ill is a real 
valued function called the norm. The concept of norm 
can be extended to include matrices 

IlAxII 
X # O  llxll llAlli = SUP - 

this is called the induced matrix norm of A correspond- 
ing to the vector norm 11 . 1 1 .  
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The matrix measure AA) of a matrix A is the direc- 
tional derivative of the induced norm I( . I l i  at the point I 
(identity matrix), in the direction of A. That is 

111 + &Alli - 1 
p(A) = lim 

e - o +  & 

There is one interesting property of the matrix measure 
[ 161 ; if li is an eigenvalue of A, then 

- p ( - A )  < Re li d d.4) 
for asymptotic stability p(A) < 0 and d - A )  > 0. 

In this section two matrix measures corresponding to 
the I', I" norms in W are used to find the bounds for the 
real part of the eigenvalues for the linearised neural 
network, 

r 1 

5.1.1 Stability from p, ; Calculating pl for eqn. 21 

1 
1 

pl(A) = max h j j  - 1 + 1 1 hijl 

pl(-,4) = max 1 - h j j  + 1 IhijI 

j [ i f j  

j II i f  j 

For asymptotic stability eqn. 22 must be negative 

max h j j - l + C l h i j l  < O  
j [ i + j  1 

This is equivalent to 

hjj - 1 + 1 I hij I < 0 Vj  
if j 

and finally 

- ( h j j - l ) >  l I h i j I  vj 
i # j  

training, the network is tested for stability and for gener- 
alisation with other inputs. 

6.1 The plant 
The nonlinear plant is a single-link manipulator, shown 
schematically in Fig. 4. This plant is described by the 

note that if eqn. 24 is true then eqn. 23 is automatically 
satisfied. 

5.1 2 Stability from p - :  The same procedure is repeated 
for the matrix measure p m .  The condition for asymptotic 
stability is 

-(hii - 1) > 1 I hijI V i  (25) 
jfi 

The conditions defined by eqn. 24 and eqn. 25 are suffi- 
cient and agree with those derived in Reference 17 using 
an eigenvalue localisation theorem known as the Gersch- 
gorin's circle theorem. It is important to mention that the 
matrix measure states bounds and in particular the upper 
bound for the real part of the eigenvalues can be positive; 
this does not imply that the actual real part of the eigen- 
values is positive. In other words the conditions of eqns. 
24 and 25 are sufficient but not necessary. 

(23) 

mg 

Fig. 4 Single-link mnnipulaor 

second-order nonlinear differential equation 

mPd(t) + U&) + mgl sin e(t) = u(t) 

where the length, mass and friction coefficients are 
I = 1 m, m = 2.0 kg and U = 1.0 kg m2/s, respectively 

(24) Wl. 
The corresponding state representation is 

6 Identification 

It was shown in theorem 1 that the DRNN (eqn. 16) can 
approximate control affine systems of the class (eqn. 2). 
To illustate this result, a single-link manipulator is identi- 
fied with a DRNN using random noise as the input. After 

(26) 
i' = x2 
i2 = -9.8 sin x1 - 0 . 5 ~ ~  + 0 . 5 ~  

with q(0)  = x,(O) = 0 and y = qt). 
The plant (eqn. 26) was identified with the neural 

network (eqn. 16 and 17); the identification scheme 
assumes that the plant is a black box and the only avail- 
able information is the input-output data. Fig. 5 shows 

Y = X I  

Y nonlinear 

-. plant 

state : X r  R" 

DRNN 

siaie : x E R" 

Fig. 5 Plant identification using the DRNN 
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the nonlinear plant and the dynamic neural network 
during the identification process. 

6.2 Training 
The DRNN (eqns. 16 and 17) was trained with N = 5 
neurons and a(x) = tanh (x) to identify the nonlinear 
plant (eqn. 26); the training was carried out repetitively 
over the fixed time interval [0, tJ] with the chemotaxis 
algorithm [19] to minimise the performance index (eqn. 
27). The training input was random noise and the initial 
conditions for the neuron states were selected at random, 
tJ = 20 s. 

J = {$ c e 2 ( t )  dt}’” 

= [i r{y( t )  - yn(t)}’ dt]’” 
t J  0 

Fig. 6 shows the output of the plant and the output of the 
neural network for the training input; the performance 
index after the training was J = 0.0064. 

0.4- 

-0.4 1 V 
Fig. 6 Plant output and network output for the training input 

The parameters of the network after the training were 
as listed in Table 1. 

Table 1 : Network Daramaters after training 

Weiaht matrix W 

0.4684 -2.4995 0.421 1 -0.2848 0.1 995 
1.361 5 0.0642 0.041 3 -1.8925 -1.6608 

-0.8185 -0.9241 -0.0743 -0,1264 0.1484 
-0.3257 1.231 9 -1.0997 0.21 92 -0.8547 
-1.2444 0.4396 -0.5466 1.7342 -0.5953 

Weight vector r Initial conditions 

-0.0050 -0.0097 
-0.21 11 -0.0065 

0.1 689 0.0171 
0.0645 -0.0097 

-0.041 3 0.0025 

The first component of the weight vector r is y1 z 0; 
then according to the relative-degree theorem, the trained 
network has r = 2, It can be seen that this is the same 
relative degree as that of the plant, so the network is 
capable to identify the dynamics of the plant and its 
relative degree. 

To verify the generalisation of the neural-network 
model, different inputs were used. One such input, is a 
sine wave 

Fig. 7 shows the output of the plant and the output of the 
network for the input (eqn. 28); the performance index 
was J = 0.0069. 

0.4 , 
0 3  
0 2  
0 1  

0 
-0 1 

-0 2 

-0 3 
-0.4 1 

Fig. 7 Plant output and network output for  the input of eqn. 28 

The stability of the trained network was tested using 
the first method of Liapunov and the matrix measure p w .  
The real part of the eigenvalues of the linearised network 
lies in the interval 

-5.8919 < Re Ai < 4.0203 

and the exact eigenvalues are 

-0.2260 + j3.1483 

-0.2260 - j3.1483 

-2.0288 + j0.1798 

-2.0288 - j0.1798 

- 0.4082 

It is concluded that the trained network has good gener- 
alisation capabilities and it is stable, so it can be used as 
an open-loop observer. 

7 Control 

In this section the DRNN is used to cancel the nonlinear 
terms of the plant and to produce a desired linear 
dynamics between the new input U and the plant output 
y. Then the linearised plant is immersed in the GLC 
structure and a PI controller is adjusted to match a 
closed-loop desired response. 

The desired dynamics for the linearised plant was 
chosen as 

li- 1 - 
U (sz + 5s + 6) 

This is equivalent to the differential equation 

dY 3 + 5 - + 6y = U 
dt 

The trained neural network was used to calculate the lin- 
earising state feedback 

(30) 
U - L; 9 x 1  - Bl Ll4X) - 8 2  9 x 1  

L, LI 4 x 1  U =  

where = 5 and B2 = 6. Fig. 8 illustrates the linearisa- 
tion of the plant (eqn. 26) with the input (eqn. 30), and 
Fig. 9 compares the desired open-loop dynamics (eqn. 29) 
and the linearised plant dynamics for a random noise 
input v ;  the performance index was J = 0.0187. 

Now the linearised plant is introduced into the GLC 
structure; the aim here is to ensure that the overall 
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closed-loop system matches some desired global 
dynamics. In this instance, a well damped second-order 
dynamics of the form 

U 

Fig. 8 lnput-output linearisation using the DRNN 

Fig. 12 shows the response for the step r = 0.5, when 
the mass of the single link manipulator was changed from 
2.0 kg to  2.5 kg; the performance index was J = 0.0326. 
Fig. 13 presents the response for the step r = 0.5, when a 

0.5 

0.4T A 

0.2 
0.1 

0 
-0.1 

- 0.2 
-0.3 1 

Fig. 11 
input of eqn. 32 

Desired closed-loop response and actual GLC response for the 

"1 0.2 

Fig. 12 
erence r = 0.5 when the mass of the plant is changed from 2.0 kg to 2.5 kg 

Desired closed-loop response and GLC response for a step re/- 

-0.21 
Fig. 9 
dynamics for a random input U 

Desired open-loop dynamics and actual input-output plant 

was selected. The PI controller is 

v = [p' + :]e 

where k ,  = 1.0 and ki  is adjusted. 
Fig. 10 shows the desired closed-loop dynamics (eqn. 

31) and the actual dynamics of the GLC structure for the 

i/. - ~ /+---- 

0.2 

0.1 

0 
Fig. 13 Desired closed-loop response and GLC response for a step re/- 
erence r = 0.5 when a disturbance of magnitude 0.1 is applied during the 
interual [ lO.O,  12.01 s 

Fig. 10 
step reference r = 0.5 

Desired closed-loop response and actual GLC response for a 

reference input r = 0.5, the performance index (eqn. 27) 
[replacing y,(t) by yAt)] was J = 0.0121 with ki = 3.8. 
Fig. 11 shows the desired output and the plant output for 
the sinusoidal input (eqn. 32); the performance index was 
J = 0.0216. 

disturbance of magnitude 0.1 was applied to the reference 
during the interval At = clO.0, 12.01 s; the performance 
index was J = 0.0132. 

8 Conclusions 

It has been shown that the dynamic neural network (eqn. 
15) can identify the relative degree and the dynamics of 
nonlinear systems of the class (eqn. 2). 

After training, the neural network can be used to syn- 
thetise a linearising state feedback that cancels the non- 
linear terms of the plant and yields any desired linear 
dynamics U - y. The identified network is used in two 
ways: 

(a) to calculate the Lie derivatives of the linearising 
feedback 

(b) to generate, on-line, the state vector x needed in the 
Lie derivatives. 

To cancel the nonlinear terms properly, the trained 
network must be stable. It was shown that, owing to the 
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particular structure of the proposed DRNN, the stability 
can & tested easily using the first method of ~ i ~ p u n ~ ~  
and a matrix measure. 
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