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In adaptive control, the objective is to provide a single controller (consisting of
a feedback law and a parameter adaptation law) which can control each system
belonging to a certain class of systems. The systems are not known precisely:
only structural properties (e.g. minimality, minimum phase, known relative
degree) are assumed to hold. The control objectives are stabilization, tracking
or servomechanism action. The paper surveys those aspects of the field of
adaptive control which started in the 1970s wherein no parameter estimators
are used. In addition to universal adaptive controllers for finite dimensional
minimum phase systems of relative degree 1, controllers for higher relative
degree, non-minimum phase, infinite-dimensional, and nonlinear systems are
also presented.

1. Introduction

A WIDE range of control theory deals with the problem that, for a known plant,
a controller has to be designed in order that the feedback system achieves a pre-
specified control objective. The fundamental difference between this approach and
that of adaptive control is that the plant is not known exactly, only structural in-
formation is available. The aim is therefore to design a single controller which can
be applied to a variety of systems belonging to a certain class. The control law has
to be designed so that the controller learns from the behaviour of the system, and
based on this information, it adjusts its parameters. This area has been intensively
studied over the last 40 years. See Astrom (1987) for a survey article.

Up to the end of the 1970s, most adaptive control mechanisms would attempt to
identify or to estimate certain parameters of the plant, and then design a feedback
controller on the basis of this information. In this survey, an overview is given
on adaptive controllers which are not based on any parameter identification or
estimation algorithm or injections of probing signals. The objective is not to obtain
information about the plant, but simply to control the unknown plant or process.
For a conceptual framework, containing the controllers described in the present
paper and, in addition, adaptive control systems formulated in terms of error models
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322 A. ILCHMANN

based on identification mechanisms, see Morse (1990), (1990a).
Most of the adaptive controllers surveyed in the present paper fit into the fol-

lowing general description. Suppose E is a certain class of linear finite dimensional
time-invariant systems of the form

x(0) G R" \ ( .
(A, B, C, £i , £2) £ Mn x n x l n x m x E ' x m x K n x n i x RPXI",

ni, m, p are usually fixed, but n is an arbitrary and unknown number, yrej belonging
to a (known) class of reference signals yrej, and w belongs to a (known) class of
disturbance signals V. It is desired to design a feedback law

«(0 =/(*(<). V(O. !*•«/(*)) (1-2)

depending on the reference signal, the system output, and a 'tuning' parameter k
generated by

k(t) = g(k(t), iKO.ifre/CO), *(0)eR' (1.3)

so that there exists a (unique) solution of the closed loop system (1.1)-(1.3) on
[0, oo), the internal variables are bounded, and most importantly y(t) asymptotically
tracks yre;{t).

DEFINITION 1.1. Let / : K' x W x Rp—•Rm, g : R' x W x RP-vR' be continuous
in y and yre/, and piecewise right continuous in k. The controller consisting of
the feedback law (1.2) and the adaptation law (1.3) is called a universal adaptive
regulator solving the scrvomechanism problem for the class of systems E, the class
of disturbances V and of reference signals yTtj, if for every w £ T>, yrej G yref,
and every system (1.1) belonging to E the closed system (1.1)-(1.3) satisfies

(i) there exists a (unique) solution on R+

(ii) x, y, u are bounded if yrej and w are bounded

(iii) l im^ o o [y(0-y r e / ( t ) ] = 0

(iv) lim^oo k(t) - too G R' exists.

/ is called the order of the controller.
A (universal) adaptive regulator is called a (universal) adaptive tracking controller
if V = {0}, and a (universal) adaptive stabilizer if V = {0} and yref = {0}.

If the closed-loop system does not have the property of uniqueness of solutions,
then (ii) and (iii) must be valid for every solution.

We also introduce adaptive controllers which do not fit into the descriptions given
in Definition 1.1, i.e. k() in (1.3) not being generated by a differential equation, /
and g depend on time, or E is a class of infinite-dimensional or nonlinear systems.
However, an extension of the above definitions to these cases is straightforward.
The model reference problem is also covered by the tracking problem since the class
of reference signals can be identified with a class of reference models and its inputs.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/article/8/4/321/657236 by guest on 26 O

ctober 2020



ADAPTIVE CONTROL - A SURVEY 323

The knowledge of the system, disturbance and reference classes is crucial for the
design of simple adaptive controllers. If the system class consists of single-input
single-output systems of the form

x(t) = Ax{t) + bu(t), y(t) = cx(t), x(0) € R" \
(A,b,c)£Mnxn x l " x R l x ° / ^ >

and the problem of adaptive stabilization is studied then the following assumptions
are known as standard assumptions

(Al) The sign of the high frequency gain is known.

(A2) An upper bound on the order n of the process is known.

(A3) The relative degree of the plant is known.

(A4) The system (A, b, c) is minimum phase (see Definition 3.1).

Over the last 15 years, various authors have investigated the necessity of these
conditions, how they can be generalized for larger classes, if they can be relaxed
and how to design simple universal adaptive controllers. A chronological list of the
most important contributions is as follows.

The first adaptive stabilizer, not based on identification of the system parame-
ter and being universal for the class of single-input single-output systems satisfying
only the assumptions (A1)-(A4), was given by Feuer and Morse (1978). This ap-
proach was improved in the following years; however, the controllers use full state
observers and are thus complicated in nature. The first very simple controller explor-
ing the high-gain properties of minimum phase systems was introduced by Willems
and Byrnes (1984). They showed that the controller k = j / 2 , u = —sgn(cb)ky is a
universal adaptive stabilizer for all systems of the form (1.4) satisfying (Al), (A4),
and having relative degree 1. The open question, see Morse (1983), as to whether
the knowledge of the sign of the high frequency gain (Al) is a necessary condition
for adaptive stabilization was answered by Nussbaum (1983), who presented an
adaptive stabilizer for first order single-input single-output systems where the sign
of cb is unknown. A very early contribution was made independently by Mareels
(1984) who introduced a simple controller for the class (1.4) satisfying (Al), (A3),
(A4), he used the 'internal model principle' to solve the tracking problem. It was
shown by Martensson (1985), (1986) that the assumptions (A1)-(A4) can be weak-
ened considerably. He proved the general result that the order of any stabilizer
is a sufficient information for adaptive stabilization, Byrnes et al. (1986) showed
the 'almost' converse. These results opened up a whole area of research devoted
to the problems of non-identifier-based adaptive control. It was shown that the
Willems-Byrnes controller can be used for multivariable minimum phase systems,
being robust with respect to certain input and output nonlinearities, and also the
tracking problem was solved. Extensions to nonlinear and to infinite-dimensional
systems were given. The controller suggested by Martensson (1985),(1986) was sim-
plified by Miller and Davison (1988) and used to solve the servomechanism problem.
The idea of using discontinuous feedback has been introduced by Ryan (1988) to
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324 A. ILCHMANN

solve the stabilization and tracking problem for much larger classes of systems in-
cluding certain nonlinear systems. Miller and Davison (1991) presented a controller
which solves a modified tracking problem for minimum phase systems, exhibiting a
much better transient behaviour.

The aim of the research can be divided into two groups. One aim is to give
necessary and sufficient conditions for classes of systems to solve the stabilization,
tracking or servomechanism problem. These results are existential in nature: they
show feasibility. The other aim is to design simple adaptive controllers which can
easily be implemented. Mathematically, the controllers can be distinguished by
whether or not they depend continuously on k. If a switching gain type controller is
considered then the feedback gain switches at discrete points of time and between
these points k is held constant. Therefore the resulting closed loop system is a
piecewise time-invariant linear system coupled with a scalar nonlinear equation.
This simplifies the analysis.

The paper is organized in a systematical rather than in a chronological way. In
order to make the reader familiar with some basic techniques used in this area, some
proofs are given explicitly. We start in Section 2 with the most elementary class of
systems, namely first order systems. Even in this simple situation we gain insight
into basic ideas as high-gain, switching strategy, and necessary and sufficient con-
ditions. In Section 3, the class of multivariable linear systems which are minimum
phase and of relative degree 1 is studied. After presenting basic properties, we in-
troduce various controllers and extend the system class step by step by generalizing
the assumption on the high frequency gain. In Section 4, the assumption of relative
degree 1 is dropped. Eventually, non-minimum phase systems are studied in Sec-
tion 5. Principal results on adaptive stabilization and model reference control are
reported in Section 6. In Section 7 (respectively, 8) it is shown how previous results
could be extended in an infinite-dimensional (respectively, nonlinear) set-up. Open
problems and future research is discussed in Section 9.

Contents

2. Single-input single-output systems of order 1.
3. Multivariable minimum phase systems of relative degree 1.

3.1 Properties of minimum phase systems
3.2 <T(CB) C C+.

3.3<r(C£)cC_ or c{CB) C C+
3.4 det(CB) ± 0
3.5 Exponential stabilization
3.6 Tracking
3.7 Robustness

4. Minimum phase systems of higher relative degree.
4.1 Observer-based model reference controllers
4.2 Non-observer-based stabilization and tracking
4.3 Tracking within a ball

5. Non-minimum phase systems.
5.1 Stabilization
5.2 Tracking and the servomechanism problem

6. Necessary and sufficient conditions.
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ADAPTIVE CONTROL - A SURVEY 325

7. Infinite-dimensional systems.
8. Nonlinear systems.
9. Conclusions

2. Single-input single-output systems of order 1

In this section^ we consider the simplest system class, namely single-input,
single-output systems of order 1. In this case we gain insight into the idea of high-
gain adaptive control, the concept of switching functions, and characterizations of
universal adaptive stabilizers.

Consider the class of controllable and observable scalar systems of the form

x(t) = ax(t) + bu(t), y(t) = cx{t), x{0) G K \ ,„ ,
a,b, c £ l and cb £ 0 J ( ' '

If we apply the feedback law u(t) = — ky(t) to (2.1) then the closed loop system has
the form

x(t) = [a - kcb]x(t) (2.2)

Clearly, if a/\cb\ < \k\ and sign(k) = sign(cb), then (2.2) is exponentially sta-
ble. However, a,b,c are not known and so the problem is to find adaptively an
appropriate k so that the motion of the feedback system tends to zero.

Consider first the subclass where the high frequency gain is positive

(a,b,c) belongs to class (2.1) and satisfies cb > 0. (2.3)

Now a time-varying feedback is build into the feedback law

«(<) = -k(t)y(t), (2.4)

where k(t) has to be adjusted so that it converges to a finite limit which is large
enough to ensure stability. This can be achieved by the adaptation rule

k(t) = |y(0|', k(0) € R (2.5)

where p > 1 is arbitrary. The nonlinear closed-loop system

i(t) = [a-k(t)cb]x(t), k(t) = \c\" [ \z(s)\'ds + k(0), (Ar(0),i(0))€RxR
Jo

(2.6)
has at least a solution on a small interval [0,i'), and the solution

x(t) = exp I / [a - k(s)cb] ds\ + z(0)

is exponentially increasing so long as a — k(t)cb > 0. Hence, k(t) > t|cx(0)|p + k(0)
also increases. Therefore, there exists a t' > 0 such that a — k(t*)cb = 0 and (2.6)
yields a — k(t)cb < 0 for all t > t'. This yields that the solution x(t) decays
exponentially and lim^oo k(t) = t w g K exists. So we have proved that (2.4),
(2.5) is a universal adaptive stabilizer for the class (2.3).
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326 A. ILCHMANN

Furthermore, as S. Townley of the University of Exeter pointed out to the author,
in this simple situation it is even possible to determine the terminal gain k^, :=
lim^oo k(t) in terms of the system data. If, for example, p — 2 in (2.5), then it
follows from (2.2) that

y(t)y(t) = (a-k(t)cb)k(t)

and integration yields

y(02 y(0)2

= f (a- k(s)cb)k(s)ds = / (a - rcb)dr.
JO Jk(O)>0 Jt(0)

Since limi_oo x(t) = 0, /too is the positive solution of the quadratic equation

-f[^-±(o)2]
which is

1 2 '

It was an open problem as to whether there exists a universal adaptive stabilizer
for the class (2.1). Morse (1983) conjectured that there does not exist a universal
adaptive stabilizer if / and g, see (1.2) and (1.3), are differentiate functions. This
would imply that the knowledge of the high frequency gain is a necessary condi-
tion for universal adaptive stabilization, see (Al). Nussbaum (1983) proved that
the conjecture is true if / and g are required to be polynomials or rational func-
tions. More importantly, Nussbaum introduced the following rich class of analytic
controllers which are universal adaptive stabilizers.

u(t) = [k(t)2 + l}h(k(t))y(t), k(t) = y(t)[k(t)2 + i\, *(0)GR (2.7)

where h: K—•R is an analytic function satisfying

i yk l rk

sup — / h(s) ds = +00 and inf — / h(s)ds = — oo
i>o * Jo *>° * Jo

Nussbaum's example is
h(k) = cos ( ! * ) e x P { * 2 } . (2.8)

The intuition behind this controller is that the switching function h() takes
both positive and negative values and the sign is kept constant on longer and longer
intervals. Eventually /»(•) has the 'correct' sign for a sufficiently long period in which
the closed loop system stabilizes out such that k(t) converges to a finite limit and
no more switching occurs.

Willems and Byrnes (1984) proved that the following simplification of (2.7) is a
universal adaptive stabilizer for the class (2.1) as well

t,(t) = N(k(t))k(t)y(t), k(t) = y(t)2, i(0)£M (2.9)
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ADAPTIVE CONTROL - A SURVEY 327

where ,/V:R—+M is a Nussbaum function, i.e. a piecewise right-continuous function
which satisfies the so called Nussbaum condition

1 /* 1 /•*
sup - / AT(r)rdr=+oo and inf - / NMrdr = -oo (2.10)
t>o * Jo *>° * Jo

Examples are given by Ni(t) = sin y/i, ^V2(t) = t cos i, and

{ 1 if 0 < |*| < Ao

1 if An < |*| < An + 1 , n
- 1 if An < |f | < An+i , n

where, for example, An := n2 or An+i := A2,, Ao > 1.
The following stabilizer suggested by Morse (1984)

even
odd

u(t) = k(t)2 cos k(t)y(t), k(t) = y(t)2, *(0) 6 R (2.11)

is a special case of (2.9).
The class (2.1) has been extensively studied by Helmke and Pratzel-Wolters

(1988), a shortened version can be found in Helmke and Pratzel-Wolters (1988a).
They have tried to characterize the set of all universal adaptive stabilizers of order
1 under the constraint that the feedback and adaptation law

u(t) = f(k(t),y(t)), k(t) = k(t)rg(k(t),y(t)), *(0) € M, r > 1 (2.12)

are given by analytic functions / and g.
As a necessary condition they proved the following proposition.

PROPOSITION 2.1. // (2.12) is a universal adaptive stabilizer for the class (2.1)
then necessarily

g(k,y) = 0 => y = 0 (2.13)
and for all (k,y) € K2 either g(k,y)>0 or g(k,y) <0 (2.14)

That this condition is almost sufficient is shown in the following theorem.

THEOREM 2.2. Suppose f,g are analytic functions, g satisfies the necessary condi-
tions (2.13), (2.14) and, in addition,

g(k,y)>m for all (k,y)eR2\K (2.15)

for some compact set K, C IK2 and some m > 0. Suppose furthermore, that

f + *
y

is such that f/g can be decomposed into f(k,y)/g(k,y) = f(y) + h(k,y) with

) I < M for all (fc,y)GR2\X:, for some M > 0
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328 A. ILCHMANN

and the following Nussbaum type conditions are satisfied

suPt>o £ Jo Kr)dr = +°° and s"Pi:>o £ Jo f(T)dr - +°° ,n .
t - t - ( 2 1 6 )

infi>o £/0 f(r)dr= -oo and inft>0 £/0 /(r)cfr = -oo.

TAen (2. IS) is a universal adaptive stabilizer for the class (2.1).

Examples for these controllers are the Nussbaum controller (2.7), the Willems-
Byrnes controller (2.9), and the following Heymann-Lewis-Meyer controller

k(t) + lj,(02) y(0, *(0 = »(02. *(0) 6 K
(2.17)

Heymann et al. (1985) proved certain terminal behaviour of this controller depend-
ing on the initial conditions of the system. It is shown that the transient behaviour
of (2.17) is better than that of the Willems-Byrnes controller (2.9) or of the Morse
controller (2.11) whose terminal behaviour is unpredictable and dependent, in an
erratic way, on the initial data.

Another improvement of the local behaviour of the controller (2.9), in the case of
known high frequency gain, is achieved by Cabrera and Furuta (1989) who modify
the adaptation law in (2.9) to k = —ak + y2 for some a > 0. Under certain
assumptions on the system class the closed loop system is robust against bounded
disturbances.

3. Multivariable minimum phase systems of relative degree 1.

In this section, we consider classes of m-input m-output systems of the form

i(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) £ Mn (3.1)

where (A, B, C) £ R n x " x R n x m x Mm x n , and n is unknown.

S.I. Properties of minimum phase systems

Before presenting various adaptive controllers, we study one of the basic assump-
tions common to many classes of higher order systems. •

DEFINITION 3.1. A system of the form (3.1) is called minimum phase if it satisfies

J~A * 1 ^ 0 for all s<EC+. (3.2)

The minimum phase property can be characterized as follows.

PROPOSITION 3.2. The system (A,B,C) of the form (3.1) is minimum phase if
and only if it satisfies the conditions

(i) rk[sln - A,B]-n V s € C+ , i.e. (A, B) is siabilizable by state feedback.

(ii) rk f SJn ~ A ] = n V s £ C+, i.e. (A, C) is detectable.
L ° J
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ADAPTIVE CONTROL - A SURVEY 329

(Hi) C(sln - A)~lB G K(s)m x m has no zeros in C+.

Proposition 3.2 shows that, for stabilizable aHd detectable single-input single-
output systems, condition (3.2) is equivalent to the well-known definition via the
transfer function.

A relationship between multivariable minimum phase systems and positive real
systems has been investigated in Owens et al. (1987).

If det(CB) ^ 0 then the state space can be decomposed into the direct sum
Rn = imB © kerC and this leads to the following convenient decomposition of the
system (3.1).

LEMMA 3.3. Suppose (S.I) satisfies det(CB) ^ 0. //V G R"*("-m) denotes a basis
matrix ofkerC, then U := [B(CB)~\V] has the inverse

T=(VTVy1VT[ln-B(CB)-lC}.

Hence the state space transformation

converts (S.I) into

z(t) = A3y(t) + A4z(t)

where Ay G Rm x m , A2 G Rm x(n-" l) ) A3 G R("-m)x m , AA G R("-m)x("-">).
// f5.1) ts minimum phase then o-(A^) C C_ .

Consider a minimum phase system of the form (3.1) satisfying det(CB) ^ 0.
Then it is possible to choose K G R m x m such that a(CBK) CC+. If the feedback
law u(t) — —kKy(t) is applied to (3.1) then for k large enough, i.e. high-gain, the
closed-loop system is stable. This follows from

XI -Ay+ kCBK -A2

-A3 XI - A

- del (XI - Ax + kCBK) del [(XI - AA) - A3(XI - Ay + kCBK)~lA2] .

Thus, in the limit we obtain

lim a (A- kBKC) = lim a (-kCBK) U a (A4) .

In the adaptive situation k will be time-varying. However the previous intuition
for the stability of the system remains valid and we have the so called high-gain
lemma.

LEMMA 3.4. Suppose k():[O,t') —> R, t' < oo, ts an unbounded nondecreasing
piecewise continuous function and

(i) D G R n x n has simple null structure, i.e. the zero eigenvalues are semtsimple,
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330 A. ILCHMANN

(ii)o-(D)\{0}cC+,

(Hi) for some e > 0 there exists t* £ [0,t') such that

a{A - k(t)D) C {A 6 C_ |ReA < -e] for all t G [f,t').

Then the system x(t) = [A — k(t)D]x(t) is exponentially stable, i.e. there exist
M,\>0 such that

\\x(t)\\ < Me-^-^H^to)!! for allt G [*o,0.<o <E [0,0-

Lemma 3.4 has been stated independently by Martensson (1986, 1987) and by
Ilchmann et al. (1987). However both proofs are incomplete. Schmid (1991) pointed
out that, without assumption (ii), the claim of the lemma does not hold true in
general. The proof in Ilchmann et al. (1987) goes through if (ii) is added.

If the system (3.1) fulfils a(CB) C C+, then D = BC obviously satisfies (i) and
(ii), and the minimum phase condition implies (iii).

Another important consequence of the minimum phase property is the following
inequality which relates the input and the output of the system only.

PROPOSITION 3.5. Suppose the system (S.I) is minimum phase and det(CB) ^ 0.
Let 0 < to < t' < oo and u(-):[to,t')—»-Mm be measurable and locally integrable,
P e Mn x n be positive definite, and p > 1. Then there exists an M > 0 such that
for allt G [to,t')

^\\y(t)\\PP < M + MJ\\y(s)\\p
Pds + JUyisWf'Wyis^PCBuWds (3.4)

to to

where 0:Mm-+ Rm, y ~ 0(y) ~ j M V ̂  jj
A proof is given in Ilchmann and Owens (1991a) and in a more detailed version
in Ilchmann and Logemann (1991). Lemma 3.4 and Proposition 3.5 are crucial for
the generalization of the Willems-Byrnes controller (2.9) to multivariable minimum
phase systems. This will be done in the following two subsections.

3.8. a{CB) C C+

In this subsection, we consider the class of multivariable systems of the form (3.1)
which have an invertible high frequency gain CB with unmixed spectrum. Let

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), z(0)eHr )
(A,B,C)eRnxnxRnxmxMm*n, a(CB)cC+ > (3.5)
(A, B, C) is minimum phase, n arbitrary J

THEOREM 3.6. Let p > 1. Then the controller

u(t) = -k(t)y(t), *(<) = ll»(0llp. t ( 0 ) 6 l (3.6)
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ADAPTIVE CONTROL - A SURVEY 331

is a universal adaptive stabilizer for the class (S.5), i.e. the solution of the nonlinear
closed-loop system

i(t) = [A- k(t)BC]x(t), x(0) € R" \ ,„ ...

*(0)eR

exists on the whole ofWL+, and

lim y(t) = 0, lim k(t) G K exists.

Proof. Since the right hand side of (3.7) is locally Lipschitz in x and in k, there
exists a maximal t' > 0 such that (3.7) has a unique solution on [0,t')- Suppose
k() $. Loo(0,t'). Then Lemma 3.4 implies that x ( ) satisfies

| | i ( t ) | |<Me- A < | | x (0 ) | | for all te[O,t').

and the adaptation rule implies k() G / ^ ( O . t ' ) . Therefore the solution of (3.7) does
not have a finite escape time, i.e. t' = oo. Since t/() G Lp(0,oo), it follows from
the second equation in (3.3) that z{) G Lp(0,oo), thus (3.3) yields i ( ) G ip(0,oo).
Now x(-),x(-) G Lp(0,oo) gives limj-^oo x(t) = 0. This completes the proof. •

Using the basic ideas of the previous proof, it can be shown that the class of adap-
tation rules can be extended as follows.

THEOREM 3.7. Let p > 1 and consider

u(t) = ~k(t)y(t), k(t) = g(t,k(t),y(t)), Jb(O) = k0 G R (3.8)

where g: K + x M + x R m - » l is a Carathiodory function, locally Lipschitz in the second
and third argument, and locally integrable in t G M+. Suppose that the solution k(-)
of the closed-loop system (S.I), (S.8) satisfies, on its maximal interval of existence
[0,t'), the following conditions

k(t) > 0 and non-decreasing in t (3-9)

y(-) G Li(O,t') for all i G [p.oo] => fc(-) G Loo(0,O (3.10)

k() £ L^OJ') ^ j / ( ) G L p ( O , t ' ) (3.11)

Then (S.8) is a universal adaptive controller for the class (3.5).

EXAMPLE 3.8.

). I<P<P'<OO,

•=p

where F : R - ^ K is a polynomial such that F(\) > Fo > 0 for all A G K.

That the feedback law u(<) = — k(t)y(t) together with an appropriate adaptation
law leads to a universal adaptive stabilizer for the class (3.5) has been shown for
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- m = 1 and k(t) = \\y(t)\\2 by Willems and Byrnes (1984)

- m > 1 and k(t) - \\y{i)\\2 by Byrnes and Willems (1984)

- m > 1 and k{t) = a\\y(t)\\2 + /?IK<)||2, a > 0, /? > 0 by Martensson (1986)

- m > 1, k(t) satisfying (3.9)-(3.11) for p = 2 by Owens et al. (1987).

Owens (1991) has proved that the Willems-Byrnes controller is also applicable to
a certain class of singular systems.

S.S. a(CB) C C+ or a(CB) C C_

If the sign of cb is unknown or the spectrum of CB is known to lie either in the open
right or left half plane, then Nussbaum's idea of implementing a switching function
(see Section 2) carries over to the n-th order case. Consider the following class of
all minimum phase systems of the form (3.1) with unknown state dimension and
<T(CB) C C+ or <J{CB) C C_ , i.e.

= Cx(t), x(0)6M" )
( J 4 , S , C ) € R n x n x I R n x m x R m x " , a{CB) C C+ or a(CB) C C_ \ (3.12)
(A,B,C) is minimum phase, n arbitrary J

Due to the multivariable situation, we need to introduce scaling invariant Nussbaum
functions, i.e. piecewise right-continuous functions 7V(-):M -»Mso that for every
a, (3 > 0, the function

- f " * ( 0 ^ N(t) > 0
~ \ 0N(t) if N(t)<0

satisfies (2.10) as well. (The concept of scaling invariant switching functions was
originally introduced by Logemann and Owens (1988).)

THEOREM 3.9. Let p > 1 and N:HL—*K be a scaling invariant Nussbaum function.
Then the controller

u(t) =-N(k(t))k(t)y(t), k(t) = ||y(OHp, i ( 0 ) 6 R (3.13)

is a universal adaptive controller for the class (S.I 8).

Proof. The proof is similar to that of Theorem 3.6, only the step that k(-) (£
Loo(0, t') needs a modification. Without loss of generality, assume that a(CB) C C+
(otherwise consider -CB). Let P G Rm x m be positive definite and such that
PCB + (CB)TP = Im. Inserting the feedback law into the inequality (3.4) yields,
for some M > 0 and k(t0) ^ 0

\\y(s)\\p
Pds - J iV(fc(S))i:(S)||y(5)||?r1 (/?(»(*), PCBy{s))ds

to <0

t *(0
< M + Mk(to)-

l\\P\\' Jk(s)\\y(sWds+ j NMiidpL (3.14)
(o t(<o)
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where
ff(t\=f-(sm\n(P))2^^N(t) if N(t)>0

I ) S " " " ^ ' •»•* if N(t)<0

denotes the smallest singular value of P. Now the right hand side becomes
negative by the property of the Nussbaum function which contradicts the positivity
of the left hand side. This completes the proof. a

That the feedback law u(t) - -N(k(t))y(t), where N() is a Nussbaum gain, to-
gether with an appropriate adaptation law leads to a universal adaptive stabilizer
for the class (3.12) has been shown for

- m = 1 and k(t) = y(t)2 by Willems and Byrnes (1984)

- m > 1 and introducing a general function N(k) by Martensson (1986)

- TO > 1 and more general adaptation laws and switching functions by Owens
tl al. (1989)

Ioannou (1986) considered systems belonging to (3.12) which are coupled with
a 'parasitic slow' linear system. He showed that under certain assumptions the
Willems-Byrnes controller (2.9) is a universal adaptive stabilizer if the initial state
of the unknown system lies in a certain bounded region.

An alternative approach to Nussbaum's switching strategy makes use of the
following switching decision function which determines the switching times 0 =
*o < *i < • • • of the switching function 7V:K+ —* {—1,+1} in the following way.
Consider the switching decision function xp(-)

, /oV(r)dr#0 ( 3 '15)

with i = y2. If {A,-}jgN is a strictly increasing, unbounded sequence of real, positive
numbers or 'thresholds', then N{t) is defined by the following algorithm:

J = 0

N(U) := 1
(*) U+i := min {t > *,- | N(ti)i>(t) < \i+ik(t0)}

N(t):=N(ti), te[U,ti+i) (3-16)
N(ti+1) := -N(U)
i := i + 1
go to (*)

The algorithm is well-defined because

(i) ip(t) is monotonic on any interval t > 0 where N(t) is constant

(ii) V'(̂ o) = H^o) e n s u r e s correct initialization of the algorithm.
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Using the ideas presented in Ilchmann and Owens (1991), the following theorem
can be shown. Note that the switching parameter N(k) is adjusted in finite time
and that it is in the hand of the designer to choose an appropriate sequence of
thresholds.

THEOREM 3.10. The controller

u(t) = -N(k(t))k(t)y(t), k(t) = \\y(tW, Ar(O) € K

where N(-) is produced by (3.15), is a universal adaptive stabilizer for the class
(3.12). Moreover, tp(t) has a finite limit ipoo as <—•H-oo, and the switching function
N(t) switches only a finite number of times *i,<2i • • - , ' M , *" that N(t) is constant
fort>tM-

3.4. det(CB) ? 0

If it is only known that the system has an invertible high frequency gain but the
spectrum is mixed, i.e. det(CB) ^ 0, then the construction of a universal adaptive
stabilizer is based on the following result from linear algebra proved by Martensson
[5], Section 8.

LEMMA 3.11. There exists a finite set {Ki,...,KN} C G I m ( K ) with the property
that, for any M E GLm(R), there exists i 6 N_ such that a(MK{) C C_ .

Now the feedback law is given by

u(t) = k(t)Ks(k(t))y(t) (3.17)

where
S : R — {l,...,N} = N_ (3.18)

s(k\ _ / 1 i f *e(-oo,Ti) ( .
° W ~ \ i if ke[T,N+i,T,N+i+1) for some / g No, i 6 K ( '

is a switching function driven by k(t) so that Ks(k(t)) cycles through the spec-
trum unmixing set {K\,..., Kpj} and {f,'}i€N is a monotone increasing sequence of
switching points which satisfy

lim — = 0 (3.20)
i—oo Ti

The switching sequence necessarily fulfils limj_0O r,- = oo . The class of switching
sequences satisfying (3.19) is more restrictive than in the single-input single-output
case, since for the sequence r,- := »2 (3.19) does not hold true. However, r,+1 := r?
and r i+1 :— r,+exp{t2} satisfy (3.19).

Under the above assumptions, the following result is available.

THEOREM 3.12. The feedback and adaptation law

u(t) = k(t)Ks(k(t))y(t), k(t) = M o i l ' , *(0)<ER (3.21)

ts a universal adaptive stabilizer for the class of muliivariable minimum phase sys-
tems of the form (3.1) which satisfy det(CB) ^ 0.
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The intuition behind this control strategy is similar to Nussbaum's idea. If the
'correct' K{ is hit, the gain is large enough^ and the time interval until the next
possible switch is long enough (which is ensured by condition (3.19)), then the
system settles down and no more switchings occur.

This result was claimed by Byrnes and Willems (1984) and by Martensson
(1986). However, both proofs are incomplete, a correct proof is given in Ilchmann
and Logemann (1991).

3.5. Exponential stabilization

For first-order systems it has been shown, in Section 2, that the trajectory x(-)
of the closed-loop adaptive control system (2.5) decays exponentially to zero. It
also follows that the terminal system defined by i(i) = [a — koobc]z(t), k^ :=
limt-.co k(t) is exponentially stable. This was not shown for higher-order systems,
where only asymptotic decay to zero was proved. Note that we did not show that
the terminal system

x = [A- kooBC^t), koo = lim k(t) (3.22)

is exponentially stable, but only that each trajectory of the closed-loop system
tends to zero asymptotically. Counterexamples where (3.21) is unstable can easily
be constructed. However, computer simulations have shown that the controller
(3.13) produces in most cases an exponentially stable terminal system. But, to
the author's knowledge, it is still an open problem if generically, with respect to
the initial conditions x(0) £ Kn,Jk(0) G M, the terminal system produced by the
universal adaptive controller (3.13) is exponentially stable.

To overcome the lack of exponential decay, it is possible either to strengthen the
minimum phase assumption on the system class or to introduce additional dynamics
into the adaptation law.

If (A,b,c) is in the class (2.3), then for w > 0 sufficiently small (A + wln,b,c)
belongs also to (2.3). If the adaptation mechanism is chosen to ensure that xu{) is
an asymptotically stable (and hence bounded) solution of the closed-loop system

xu(t) = [(A+uIn)-k(t)bc]xu(t) (3.23)

then the solution of
x(t) = [A-k(t)bc]x(t), (3.24)

given by x(t) — e~wtxU)(t), must be of exponential decay. Examples of such adap-
tation mechanisms are the so-called 'exponentially weighted' controllers

k(t) = k0 + max e""||!/(*)ll> see Owens et al. (1987)

and
k(t) = e""||y(0H2. see.Logemann (1990)

which consequently yield the desired stabilization result. However, it does require
knowledge of a suitable value of u>.
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In order to apply the strategy explained above, one possibility is (see Logemann
(1990)) to strengthen the minimum phase condition defining the system class E to
satisfy

det f sIn~ A ^ 1 / 0 for all a £ {A £ C| Re A > -u] (3.25)

for some known u > 0.
Another possibility is to consider schemes that adaptively find a suitable value

for u on-line. This idea was introduced for a special control law in Ilchmann
and Owens (1990), where it has been shown that exponential stabilization can be
achieved by choosing w adaptively using the control scheme defined by

for t 6 [0, h)
for t > h

(3.26)
where h > 0 is arbitrary. The idea behind this is the knowledge that, for some
w* > 0, the adaptive control lawi(i) = exp(2w'<)||j/(<)||2 will exponentially stabilize
the system. Thus, as long as u(t) is too large, x(t) will increase and the gain
grows whence u(t) becomes smaller. Eventually u(t) is small enough to guarantee
convergence of k(t). Now it follows from (3.25) that ui(t) converges itself.

In fact, the example (3.25) can be extended since we only use that u : M+—»-R-(-
is a continuously differentiate function which satisfies the conditions

u(k) is non-increasing in k £ R+ "j
w(lfc) > 0 for all k £ R + if w() £ 0 \ (3.27)

l im^oo w(Ar) = 0 J

This puts us into a position to prove a more general result.

THEOREM 3.13. Suppose N(-) is a Nussbaum gain. Then the feedback law

u(f) = N(k(t))y(t) (respectively, u(t) = -sgn(CB)y(t))

and the adaptation law

k(t) = e2wW<||y(f)||2, k(0) > - 1 , u satisfies (3.26)

is a universal adaptive stabilizer for the class (8.1) (respectively, (S.5)), which pro-
duces an exponentially decaying solution of the closed-loop system.

A proof is given in Ilchmann and Owens (1990). A version for the non-differential
gain adaptation using the switching decision function (3.14) is presented in Ilchmann
and Owens (1991, 1991a). If k(t) in Theorem 3.12 is substituted by (3.25), then
exponential decay of the solution of the closed-loop system holds true. This has
been proved by Ilchmann and Logemann (1991).

Unfortunately, all contributions described in this subsection have the disadvan-
tage that the gain adaptation y i-* k is achieved by an unbounded function. For a
more satisfying approach see Section 5.1.
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3.6. Tracking

In this section, we consider the tracking problem for the following class of multi-
input, multi-output, linear, minimum phase systems

y(t) = Cx(t), i(0)€R" )
(3.28)

(A, B, C) is minimum phase, n arbitrary J

and the class of reference signals

^ (3.29)

where a(s) 6 K[s] is a monic polonomial with zeros in C+ only. Note that 0 € ^re/>
therefore it is not relevant to consider the case that a(s) has zeros in C_ since the
corresponding modes are decaying exponentially.

One possibility of handling this problem is to make use of the internal model
principle, that is, a reduplicated model of the dynamic reference signals is incor-
porated as a precompensator in the feedback loop, see Wonham (1979), Section
8.8. For a different approach, see Section 4.3 and 5.2. Here, the precompen-
sator is chosen as follows. Let /?(«) £ M[s] be a monic Hurwitz polynomial of
degree p = deg(a), and choose a minimal realization of /3(s)/a(s), denoted by
(A, B, C, I) € Mpxp x W x R l x p x R, and the. precompensator is given by

B*v{t), «(*) = C*t(t) + v(t), £ (0)€R m (3.30)

where

A* = diag{A, ...,A)e RmPxmP, B* = diag{B,..., 5} G RmPx m ,
C* = diag{C,...,C}eRmxmi>.

Then the input-output behaviour t; •—> y of the series interconnection formed by
(3.27) and (3.29) is described by

i(t) = Ax(t) + Bv(t), y(t) = Cx(t), z(0)€Rn+mp (3.31)

where

In order to rewrite this as a stabilization problem, the following two lemmata
are needed.

LEMMA 3.14. (A,B,C) belongs to (S.S7) if and only if(A,B,C) belongs to (8.27)
and CB = CB.

LEMMA 3.15. For every yrej G yrej there, exists a XQ G Mn + m p such thai

yreJ{t) = Cx(t), x(t) = A£(t), x(0) = xo. (3.32)
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338 A. ILCHMANN

Now, xe(t) := x(t) — x(t) satisfies

£e(t) = Axe(i)+Bv(t), yrCj(t)-y(t) = Cxe(t), xe(0) = i(0)-i(0). (3.33)

This yields the following theorem.

THEOREM 3.16. / /

u(t) = f(k(t), y(t)), k(t) = g(k(t),y(t)), k(0) 6 K

15 a universal adaptive stabilizer for the class (3.27), then

e(t) = yreJ(t)-y(t)
v(t) = f(k(t), e(t)), k(t) = g(k(t), e(t)), k(0) G M

i
is a universal adaptive tracking controller for the class (S.S7) and the class of ref-
erence stgnals yref given by (3.87).

The previous presentation is given by Miller and Davison (1991b), and indepen-
dently by Townley and Owens (1991). The results in Miller and Davison (1991b)
cover a more general form including m > p to some extent, certain disturbances w
satisfying a(-^)w = 0 are allowed in the state and output equation, and they show
that internal stability is preserved in the sense that x and u do not blow up faster
than yrej.

For the special case of single-input, single-output, minimum phase systems of
relative degree 1, with a(s) having roots in C_ of multiplicity one if they are on JK,
the same approach has been used by Helmke et al. (1990) to present a universal
adaptive tracking controller.

Mareels (1984) was the first who used the internal model principle to construct
a universal adaptive tracking controller for single-input single-output systems of
relative degree p > 1, see Section 4.3.

Tao and Ioannou (1991) have introduced the following different tracking con-
troller for single-input single-output systems.

PROPOSITION 3.17. The adaptation law

6(t) = u>(t)[yreJ(t)-y(t)}, 0(O)€R2<'+1>
k(t) = (0{t)Mt))[Vre/(t)-v(t)], t ( 0 )£K

where w(t) = [yrej(t) — y(t), l,sinu>i<,... ,sinu>;*,.. .,coswi<,.. .,cosuit]T, together
with the feedback law

u(t) = k(t)2sink(t) • (9(t),w(t)) (3.35)

is a universal adaptive tracking controller for the class (S.S) and the class of refer-
ence stgnals consisting of

+ 6; cosw.t |
> (6.60)

u i , . . . , w i G K are known, ao,... , a ; , 6 i , . . . ,bi G K are unknown. J

The proof by Tao and Ioannou (1991) is not based on a conversion to an adaptive
stabilization problem.
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3.7. Robustness

Robustness for the adaptive controllers surveyed in the previous sections has been
considered for state and input nonlinearities entering a system belonging to (3.1)
in the following form

i(t) = Ax(t) + tp{t, x(t)) + d(t) + B[u(t) + m(t, x(t))
+Tf2(t!x(t)) + m(t,x(t),u(t))]

1/(0 = Cx(t)

and also for sector-bounded input and output nonlinearities £ and £ so that the real
input u can enter the system via u(t) = £(i, ii(t)) and the real output measurement
is given by y(t) — £(t,y(t)). All nonlinear functions are appropriately defined in
order to ensure uniqueness and no finite escape time, we omit details for brevity.

The term tp(t,x) represents time-varying state depending perturbations which
are assumed to be of sufficinetly small finite gain, thus proving well posedness. d(t)
represents an arbitrary Lp(0,oo) function. The time-varying input perturbation are
of bounded growth or can be unbounded if they are of 'correct' sign. More precisely,
the following results have been achieved.

Helmke and Pratzel-Wolters (1988) showed that the Willems-Byrnes controller
(2.9) for N(k) = —sgn(cb) is a universal adaptive stabilizer if for all (t,x) G M2 we
have

\ > P ( t , x ) \ < < p \ x \ f o r s o m e ( u n k n o w n ) ( f > 0 (3.37)

and d(t) is an Lp(0,oo) function.
An improvement of the local behaviour of the controller (2.9) is case of known

high frequency gain is achieved by Cabrera and Furuta (1989) who modify the
adaptation law in (2.9) to k = — ak + y2 for some a > 0. Under certain assumptions
on the system class the closed loop system is robust against bounded disturbances.

Theorem 3.7 holds true for multivariable systems if for all (t,x, u) G MxKnxM ra

and some (unknown) <p, i)\, ffy, 173 > 0 we have

) | |<£ | |x | | , <p sufficiently small (3.38)

ll»7i(«,*)ll<9il|x|| (3-39)
y(t)TCBV7(t,x)<0 (3.40)

f , x, u) < ||y|| m [Nl + IM|] (3-41)

see Owens tt al. (1987).
In the single-input, single-output case Theorem 3.9 is valid, if for all (t, x) €

1 x 1 " and some (unknown) »)i, J72 > 0, we have

IM*,*) | | < 7ji||z||, y(t)TCBm(t,x) < 0

This has been proved in Pratzel-Wolters tt al. (1989).
Theorem 3.9 holds also true if the Nussbaum function is scaling invariant and if

the class of single-input single-output systems is subjected to actuator and sensor
nonlinearities i{t,u) and C(t,y) which are sector-bounded, i.e. for all t 6 R and
some (unknown) /? > a > 0 we have

au < Z(t, u) < 0u for all u G K+, /3u < £(t, u) < au for all ti G K_
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and for £ analogously. This is a consequence of a general result for retarded systems
proved by Logemann (1990). Ilchmann and Owens (1991a) have shown that The-
orem 3.10 remains valid for single—input single-output systems in case of sector-
bounded input nonlinearities and that exponential stabilization, as presented in
Theorem 3.13, is also possible if a switching decision function is used for the gain
adaptation mechanism.

Theorem 3.12, proved by Ilchmann and Logemann (1991), and the extension to
achieve exponential stabilization, as stated in Theorem 3.13, remain valid in the
presence of nonlinearities satisfying (3.37) and (3.38).

Certain well-posedness properties are claimed by Tao and Ioannou (1991) if the
controller (3.33), (3.34) is modified so that discontinuous feedback is used. However,
discontinuities on the right hand side of the closed-loop differential equation is not
taken into account in their proof.

4. Minimum phase systems of higher relative degree

Jf.l. Observer-based model reference controllers

In this section, we report some results which show the feasibility of the adaptive
control problem, the controllers are complicated in nature. It has been a long-
standing problem to prove that an adaptive controller not only stabilizes or tracks
the output but ensures stability of the internal variables as well, i.e. an adaptive
controller in the sense of Definition 1.1.

Feuer and Morse (1978) introduced an adaptive stabilizer for single-input single-
output systems satisfying the assumptions (A1)-(A4). This has been, to the au-
thor's knowledge, the first proof of the global stability behaviour of an adaptive
controller. The controller is not based on any identification algorithm and does not
use a sufficiently rich probing signal: however, it uses a full state observer controller
and is complicated in nature. Its dimension grows rapidly with increasing relative
degree of the systems allowed in the system class. Feuer and Morse (1978) also
solved the adaptive model reference (respectively, tracking) problem for the system
class satisfying (A1)-(A4), the class of reference signals produced by reference mod-
els consisting of controllable and observable systems of the form (Ar,br,Cr), where
Ar is exponentially stable and the relative degree of the transfer function has to
be greater or equal to the relative degree of the process transfer function, and with
piecewise constant and bounded input signals.

This controller has been simplified by Morse (1980), and Morse (1984) could
remove the known sign assumption (Al) by making use of a switching function as
introduced by Nussbaum (1983), cf. Section 2. The same class of reference models
and reference signals is considered. Robustness has not been investigated. However,
the relative degree is only allowed to be 1 or 2 and has to be known.

These results have been generalized to relative degree 1 or 2 systems, where the
degree is unknown, in Morse (1987), see also Morse (1988a). The model reference
adaptive control problem has been solved for a certain class of reference models,
however an upper bound on the state dimension of the system has to be known.
Extensions of these results for the case where the systems is of arbitrary but known
relative degree n*, the reference model has relative degree n* — 1, are presented in
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Mudgett and Morse (1985).
However, all controllers in the above references are still based on the one pre-

sented in Morse (1980) and thus complicated in nature.
An alternative stabilizer which is valid for single-input single-output systems

satisfying (A1)-(A4) has been introduced by Narendra et al. (1980), however it is
not simpler.

4-2. Non-observer-based stabilization and tracking

Before we survey some results on minimum phase systems of relative degree p > 2,
we try to give an intuition for the design of an adaptive stabilizer.

Consider the class of single-input single-output, minimum phase, relative degree
2 systems with positive high frequency gain, i.e. systems of the form

bu(t), y(t) = cx(t), x(0)eUn 1

(A, b, c) E K n x n x Kn x K l x n is minimum phase, c6 = 0, cAb > 0. J ^ ' '

It is well known that there exist two dimensional controllable and observable
minimum phase systems of relative degree 2, which cannot be stabilized by feedback
of the form u = — ky, see Example 6.2.1 in Sontag (1990). However, if feedback of
the derivative of the output is allowed, then the closed loop system is of relative
degree 1 and standard techniques can be applied. This is demonstrated in the
following proposition, which is not available in the literature.

PROPOSITION 4.1. The feedback law

«(t) = - [*(*) + \y(t)\»}y(t) - k(t)y(t) = -[k(t)y(t) + ±(k(t)y(t))] (4.2)

together with the adaptation rule

k(t) = |y(t)|p, l ( 0 ) £ R , P > 1 (4.3)

applied to any system of the class (4-1) yields a closed-loop system with a bounded
solution on R+, and the properties /»m<_oo£(0 = 0, /tm<_»ooib(f) 6 R exists.

Proof. The feedback system can be rewritten as a system of relative degree 1 as
follows. Inserting the feedback (4.2) into a system (A, b, c) yields

i(t) = Ax(t) - bk(t)y(t) - jt(bk(t)y(t)), x(0)£Rn. (4.4)

Introducing the new variable v(t) = x(t) + bk(t)y(t) leads to the closed-loop system

v{t) = Av(t) - (I + A)bk(t)y(t), y(t) = cv(t), )
v(0) = x(0) + 6*(0)y(0) \ (4.5)
k(t) = \\y(t)\\», J

Since c(I + A)b = cAb, the relative degree of the system in the first equation in
(4.5) is 1 and the minimum phase property is preserved because of

s i - A (1 + A ) b 1 [ I b 1 _ \ s I - A b ] \ l 0
- c 0 0 1 ~ - c 0 0 « +
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Now, Theorem 3.6 gives limt_oot;(t) = 0 and lim^oo k(t) exists, and hence

lim x(t) - 0.

A generalization of this result to higher-relative-degree systems is possible if we
assume that higher derivatives are available for feedback, a clever introduction of an
internal variable t; is then due to a trick of Miller and Davison (1991). However, if
y is not available, an approximation of y, respectively a dynamic compensator, will
be used. For systems belonging to the class (4.1) it can be shown that the dynamic
compensator

s + 13 y ( s ) , for constant k G K (4.6)
s + 1u(s) = -k3

S +

yields exponential stability of the closed loop system (4.1), (4.6) if k is sufficiently
large. Rewriting (4.6) as

u(s) = -(s + l)[kO(s)], 0(s) := y(s) (4.7)

leads to the following guess of the adaptive compensator in the time domain

€R. (4.8)

In fact, if we consider the solution #t(-) of the second equation in (4.8) for fixed
fc() = k G K, then limt^oo(#t — y)i! — 0. Thus 0(t) is an approximation of y(t) if
k(t) is big enough. We obtain the following result.

THEOREM 4.2. The adaptation rule k(t) = y(t)2,k(0) G K, together with (J,.8) is a
universal adaptive stabilizer of order S for the class of systems (4-1)-

Proof. Suppose (A,b, c) belongs to the class (4.1) and is transformed as in (4.5).
An application of Proposition 3.2 allows to rewrite the closed loop system as

(4.9)£ **) =
-k{t)2

-cAbk(t)
0

k(t)2

Ax
As

0
A2

AA

( 9{t)
v(t)

where A4 £ ffi("-1)x("-1) Js exponentially stable and Ax 6 R,A^,A3 € K""1. The
coordinate transformation £ :— 6 — y leads to

z(t)

-k(t)2 - cAbk(t) -(cAbk(t)
-cAbk(t) cAbk(t) 4

0 A3

(4.10)(
Let P be the unique positive definite solution of PAA + A\P = —I and consider
the Lypunov function candidate
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ADAPTIVE CONTROL - A SURVEY 343

Then the derivative of V along the solution of (4.10) is for a suitable constant K > 0

V(t) < [-cAbk(t) + K]y(t)2

and integration yields

f* „ /•*(«)
V(t) <V(0)+ [-cAbk(s) + K]y{s)7 ds = V(0) -cAb fid(i + K[k(t) - k{0)]

Jo J*(o)
(4.11)

where we made use of the substitution k(s) = /x. If k(t) is unbounded, the right hand
side of (4.11) becomes negative, hence producing a contradiction. The remainder
of the proof uses similar arguments as in Theorem 3.6. a

Byrnes and Isidori (1986) gave a different (and incomplete) proof of Theorem 4.2.
For higher relative degree minimum phase systems, the intuition arises from

the non-adaptive case as well. It is shown in Martensson (1986) that the linear
time-invariant compensator

^ r U f - ) i ( > ) (412)

stabilizes a minimum phase systems with positive high frequency gain and relative
degree less or equal to p for Jfc sufficiently large. The same result has been shown
by Khalil and Saberi (1987) for the different compensator

u(s) = -&->£+W^Ks). (4.13)

Then the problem is to determine a suitable adaptive controller in the time domain.
Note that the transformation from (4.7) to (4.8) is meaningless if k(-) is depending
on t. However, the Lyapunov function candidate sometimes gives a hint for the
correct time-domain realization.

A very early contribution to solve a certain adaptive tracking problem was made
by Mareels (1984). He considers the following class of single-input single-output
systems with arbitrary but known relative degree, known sign of the high frequency
gain, and known upper bound for its magnitude.

x(t) = Ax(t) + 6u(t), y(t) = cx(t), x(0) G Rn }
cb = cAb = ... = cAP-2b = 0, 0<cAP-1b<go > (4.14)
( A , i l c ) e R I " ! n x I n x I l x " , n is unknown, p, g0 are known J

As opposed to the approaches mentioned in Section 4.1, Mareels' controller does not
use a state observer, instead it is relatively simple and uses ideas partially presented
above. His approach is based on the high-gain properties of the system class. For
the sake of simplicity we consider systems of relative degree 2. The following lemma
is basic for the construction of the adaptive stabilizer.

LEMMA 4.3. Suppose (Aitbi, c,) e K<xt x ffi' x R l x ' are controllable and observable
systems with exponentially stable A{, i— 1,2, so that the polynomial

go + cibis + c2b2s
2 + s3
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344 A. ILCHMANN

is Hurwitz. (Note thai go is the upper bound of the magnitude of the high frequency
gain.) Consider the following dynamical system described by

u(t) = k [i2(c1)C2) ( * ' g ) + *2y(t)] (4.15)

d f x 1 ( t ) \ _ [ A 1 + k b l C l kb,c2 ] ( X l ( t ) \ , f k b t \ m ,
It { x2(t) ) ~ [ kH2Cl A2 + kH2c2 J { x2(t) )

 + { k% ) yW (4-16)
If(A,b,c) is an element of the class (4-14) for p = 2 and the feedback compensator
(4-15), (4-H>) *s applied to (A, b,c) then there exists a ko > 0 such that the closed
loop system is exponentially stable for all k > ko-

The adaptive version of the previous lemma is as follows.

THEOREM 4.4. Let p — 2. Then the feedback compensator (4-15), (4-16) together
with the adaptation law

j t (*(02) = /(l/(0). *(0) 6 K (4.17)

»s a universal stabilizer for the class (4-14), provided / : K - » M satisfies for some
F > 0 and for all 0 < | z i | < \z2\

fZ

0 < /(*i) < ffa) < F and Z H- / (f(z)/z)dz is continuous.
Jo

An extension to arbitrary but known relative degree p > 1 is straightforward. It
is also shown by Mareels (1984) that the tracking problem for the class (3.35) can
be solved, this is done in the same way as presented in Section 3.6.

Morse (1988) has shown that the Willems-Byrnes controller (2.9) with N(k) = 1
also works for the class of single-input single—output, minimum phase systems of
relative degree 2 with positive damping rate and positive high frequency gain, i.e.
the transfer function g/{s7 + as + b) satisfies g > 0, a > 0. This result has been
extended by Corless (1988, 1991) as follows.

THEOREM 4.5. The controller u(t) — k(t)y(t), k(t) = y(t)2 is a universal adaptive
stabilizer for the class of controllable and observable systems (A,b,c) € M f ixn x
M x R l x " which are uniformly stabilizable via high gain feedback, i.e. there exist e,
k* > 0 (depending on (A,b,c)) so that

max Re \i(A - kbc) < -e for all k > k*
ign

where \i(A — kbc) denotes the eigenvalues of A — kbc.

Morse (1988) introduces a stabilizer for the following class of relative 1 or 2
systems where the exact relative degree is unknown.

x(t) = Ax(t) + bu(t), y{t) = cx(t), x(0) e R
( A , 6 , c ) € K n x n x K n x K l x o , n is unknown } (4.18)
cb > 0 or if cb = 0 then cAb > 0

He has proved the following theorem.
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ADAPTIVE CONTROL - A SURVEY 345

THEOREM 4.6. The feedback law

u(t) = -k(i)0(t) - fc(t)2y(t) (4.19)

together with the adaptation law

6(t) = -(k(t) + \)6(t) - k(tfy(t), 0(0) € R, A > 0 \ . ,

is a universal adaptive stabilizer for the class (4-18).

By increasing the dimension of the compensator by one, Morse (1987a) gener-
alized Theorem 4.6 to the class of relative degree 3 systems.

To relax the known sign condition in the class (4.18), Morse (1985) introduced
a two-parameter adaptation law of the following form

fQMO = \v(i)2 + f y(«)2d«, MO = *(0v(0 + MO (4.2i)

ze(t) = \e(t)y(t) -y(t)N(\\k(t)\\)[e(t)ke(t) + y(t)ky(t)] (4.22)

= [\y(t) - N(\\k(t)\\)y(t)kB(t)]e(t) - y(t)2N(\\k(t)\\)ky(t)

where \\k\\ := y/ky + kg, A > 0, and N(-) is a Nussbaum function, see (2.10). Then
the following result is obtained.

THEOREM 4.7. The adaptation law (4.21),(4.22) together with

xi(t) = N(\\k(T)\\)[9(t)ke(t) + y(t)kv(t)), 0(t) = -i\8(t) + u(t) (4.23)

JS a universal adaptive stabilizer for the class of minimum phase systems (A, 6, c) G
K n x n x l " x K l x n of relative degree 1 or 2.

To get an intuition for this controller, consider the fact that the output feedback
compensator

yields closed loop stability for a suitable constant kv,kg € K.
Mudgett and Morse (1989) introduced an alternative stabilizer to that given by

Mareels (1984) for the class (4.14) and p = 2.

4-8. Tracking within a ball

Miller and Davison (1991) considered a modification of the usual adaptive tracking
problem. Instead of forcing the error between the plant output and the reference
signal asymptotically to zero, it is desired to force the error to be less than an
arbitrarily small prespecified constant after an arbitrarily short prespecified period
of time with an arbitrarily short upper bound on the overshoot. More precisely
they have studied the following problem. Let

PCoo •= the set of piecewise constant bounded functions / : R-+M'

lo :— the set of continuous / G PCoo which have derivatives in
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346 A. ILCHMANN

PROBLEM 4.8 Suppose e,6, T > 0 are prespecified. Find an adaptation law

MO. !fre/O)l[<M] ->*(*)

such that the feedback law u(t) - k(t) applied to any system belonging to a pre-
specified system class and any t/r«/() 6 PC^ yields for the solution of the closed
loop system and the error

e(t):=yre,(t)-y(t)

(i) - e < sgn(e(0))e(t) < max{e, 6 + |e(0)|} for all *G[0,T]

(ii) |e(0| < e for all t>T

(iii) x ( ) , u ( ) are bounded functions .

The class of systems under consideration is

x(t) = Ax{t) + bu(t) + Ew1(t), y{t)=cx(t) + Fw2(t), i(0) G R"
Ee R n x n i , F e M l x n ' , (A,b, c) 6 K"x n x Kn x R l x n minimum phase
^i(-) € PCoo, u;2(-) G ̂ C1^ are arbitrary disturbances.

(4.25)
Notice that no assumption is made on the relative degree.

The control strategy is based on a gain adaptation which produces piecewise
constant gains k(t). Thus it is different to most of the preceding results, only
similar in nature to the results given in Section 3.4. The advantage of a switching
type controller which switches between constant gains is that the analysis on an
interval where the feedback is constant is relatively simple (because one analyses a
linear time-invariant system): it has to be ensured that the intervals between the
switching times are long enough in order to give the system time to settle down.

First assume that (4.25) is restricted to the class of relative degree p systems.
Khalil and Saberi (1987) have shown that the linear time-invariant compensator

(4.26)

stabilizes each single-input single-output, minimum phase, relative degree p > 1
system of proper high frequency gain sign and Jb sufficiently large. Miller and
Davison (1991) choose as a realization of (4.26)

w(0 = k2Gv(t) + k2He(t)
r(t) = Uv(t)

1
(4.27)

where
- 1
0
0

0

1
- 1
0

0

0
1

- 1

•

0

. . . 0

. . . 0

.. . . 0

. . . 1

. . . - 1
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ADAPTIVE CONTROL - A SURVEY 347

H = 0-1 J = p-1

and the o^'s are denned by
p - i

«=0

Observe that u can be constructed from e and v without differentiation.
Since it is assumed that the relative degree of (A, b, c) is p, it can be shown

that there exists a clever coordinate transformation so that the closed loop system
(4.25), (4.27) can be rewritten as

= cz(t)+w2(t). (4.28)

Since (4.28) is minimum phase and of relative degree one, it is possible to use the
convenient form given in (3.3). This enables us to obtain tedious estimates of the
solution of the closed loop system (4.28) and to prove the following theorem.

THEOREM 4.9. Suppose e,6,T > 0. Let k(t) depend on time and be given by

(4.29)(-if for te[U,ti+1)

where the sequence of switching times is determined in two phases:

(i)U=0, Jb(O)=O
t, = min {t > tE-_i| |e(t)| = |e(0)| + 6[l - 2~'] or \e(t)\ < $( or t = T[l - 2~']}

/ / |e(<,)| < ^e for somei = t'o, then go to phase (ii),

(it) U = min {t > f,_i: |e(t)| = c[l - l /2 i- i°+1]}

Then the feedback law (4-^7) together with the adaptation law (4-S9) is a universal
adaptive tracking controller in the sense of Problem 4-8 for all relative degree p
systems of the class (4-25).

In Phase (i) the error is forced to stay within the prespecified amount of overshoot
and to become smaller than ±e by using the high-gain properties. The so-called
'tuning function' (—t)' in (4.29) can be replaced by a simpler function depending
on the relative degree p. For example, k(t) = (—3)' will work for the relative degree
1 case.

Miller and Davison (1991) have also introduced a modification of the controller
which can cope with additive noise d() € P C^, in the output. Necessity of the
minimum phase condition is also proved.

REMARK 4.10. Theorem 4.9 can be extended to the class (4.25), that is neither
knowing the precise relative degree nor an upper bound of the relative degree, by
searching the controller dimension according to Martensson (1985). The switching
times have to be modified so that it is ensured that the feedback law (4.27) cycles
in an appropriate way through different compensators according to the dimensions
1,1,2,2,1,1,2,2,3,3,1,1.. . -
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348 A. ILCHMANN

5. Non—minimum phase systems

In Section 5.1, we present the famous result by Martensson (1985, 1986) who
introduced an adaptive stabilizer for all systems for which the order of a stabilizing
compensator is known. This approach has been improved by Miller and Davison
(1987, 1988, 1989) in order to show certain robustness properties resp. exponential
Lyapunov stabilization. In Section 5.2 we show how these stabilizers together with
an appropriate internal model can be used to design adaptive tracking controllers
solving the servomechanism problem. The results of Miller and Davison (1987,
1991b, 1989) are presented.

Most of the adaptive controllers introduced in the previous sections were smooth
in the sense that the right hand side of the adaption law k = g(k, y) and of the
feedback law u = f(k, y) depends smoothly on its arguments. The controllers
presented in this section are mostly discontinuous since the feedback law consists of
a switching gain type controller, that means the feedback gain switches at discrete
points of time and between these points k is held constant. Therefore, the resulting
closed-loop system is a coupling of a piecewise time-invariant linear system and a
nonlinear scalar equation: this simplifies the analysis to some extent. This approach
is more successful than the 'smooth approach' in the sense that many results have
first been shown by using discontinuous feedback controllers. Although in a second
step the discontinuities can be smoothed out, cf. Martensson (1986), Section 4.4,
and Miller (1991), the control strategy is essentially discontinuous.

5.1. Stabilization

Martensson (1985) has introduced an adaptive stabilizer for the following large class
of linear systems where it is only assumed that there exists a dynamic stabilizing
compensator of fixed order / G N.

Let / G N and denote by 5; the set of all systems
x(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) G Rn

(.4, B, C) G K n x " x Kn x m x RP*m so that there exists
{F, G, H, K) G K'x ' x R'XP x Mm x ' x{, , )
z(t) = Fz{t) + Gy(t), u(t) = Hz(t) + Ky(t), z(0) G R1

which asymptotically stabilizes (A, B, C)

(5.1)

Martensson pointed out that the assumption on the existence of a dynamic
feedback compensator is not crucial as is demonstrated in the following lemma.

LEMMA 5.1. Using the notations as in (5-1) we obtain that the linear dynamical
system of order I

z(t)=Fz(t) + Gy(t), u(t) = Hz(t) + Ky(t), z(0) G R1 (5.2)

is a dynamic feedback controller of the linear plant

x(t) = Ax(t) + Bu(t), y{t) = Cx(t), i ( 0 ) € l " (5.3)
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ADAPTIVE CONTROL - A SURVEY 349

if and only if the static feedback controller

K H
G F \ »(*)

is a controller of the system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) € Kn+/ (5.5)

where
0 1 B= ̂  B ° 1 A r C °

Note that (5.3) is stabilizable and detectable if, and only if, (5.5) is.
We do not present Martensson's (1985) original proof, that the knowledge of the

order of a stabilizing controller is sufficient to design a universal adaptive stabilizer,
the proof contains some gaps. The following version can be found in Logemann and
Mirtensson (1990).

THEOREM 5.2. Let / G N and <r : K—>N be a piecewise constant right continuous
function which satisfies

a([a,oo)) = N for all a € M (5.6)

and which discontinuity points are given by

ri=T?_1 t = 1 ,2 , . . . , r 0 > 1 . (5.7)

Suppose S C Si, see (5.1), and K = {#i},eN C R(m+')X(P+') is a set of controllers
associated with (5.4) so thai for every (A, B,C) € S there exists a K{ 6 K. which
asymptotically stabilizes (5.5). Then the controller

u(t) = Ko(k(t))y(t), *(O=II»(OII2+I|2(OII2, *(0)eIR (5.8)

is a universal adaptive stabilizer for the class S.

Proof. (Sketch) By (5.8) k(t) is monotonically increasing. If a(k(ti)) = O-(T{) =
to hits a stabilizing feedback matrix iv,0 then either the closed loop system stabilizes
out on the time interval [n,T?) so that lim^co k(t) < T} and no more switching
occurs, or it switches and goes unstable. But then condition (5.6) ensures that a(k)
will hit the same K{0 again at a later switching point TJ > ry. Because of (5.7) the
system will stay constant for a longer period. Eventually the system has enough
time to settle down. •

The result shows feasability rather than practical utility. If more information about
the system class is available, then this information should be used to improve the
transient behaviour and to simplify the regulation law.
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350 A. ILCHMANN

REMARK 5.3.

(i) For a more general version of Theorem 5.2 see Section 6.

(ii) It can be shown, see Lemma 4 in Logemann and Martensson (1990), that if AC
is a countable and dense subset of R(n+')x(p+<) then, for every (A, B, C) € Si,
there exists a stabilizing dynamic compensator of the form (5.4) belonging to
K. Therefore K. = Q(n+')x(p+0 satisfies the assumption of Theorem 5.2.

(iii) If AC in Theorem 5.2 is bounded, then the adaptation law in (5.8) can be
simplified to k(t) = \\y(t)\\2.

•

Under the additional hypothesis that a compact subset of the class of systems (5.1)
is considered, Fu and Barmish (1986) introduce an adaptive controller based on a
piecewise constant switching strategy and providing Lyapunov stability and expo-
nential decay of the solution.

An alternative control stategy to that presented in Theorem 5.2 resp. introduced
by Martensson (1986) has been proposed by Miller and Davison (1987a, 1988), and
for minimum phase systems by Miller and Davison (1991) , see Section 4.3. The
advantage of the different approach is that the adaptive controller tolerates certain
disturbances and noise. Miller and Davison consider the following class of systems

= Cx{t), *(0) 6 R" 1 , q ,
( A B , C ) e R n x n x R n x m x R P x n is stabilizable and detectable J K '

The idea is also based on an appropriate cycle through a parameter space and
to use stepwise constant feedback. The following lemma gives an upper bound on
the state x(t) of the closed loop system in terms of t/(), ti(-)l[o,«]: for a proof see
Miller and Davison (1987).

LEMMA 5.4. Suppose the feedback law

u(t) = Ky(t) , K E R(™+')x(m+p) (5 10)

applied to (5.5) yields an exponentially stable closed loop system. Then there exist
M,u> > 0, independent ofx(0) and «(•), such that the solution of x = [A + BKC]x
satisfies

\\i(t)\\<M\\x(0)\\ + M /e-w( '- ' )[| |ift*)ll + l|fi(«)l|]«fa for all t > 0. (5.11)
Jo

The inequality (5.11) is used to construct a criterion which decides whether to
continue or to switch off the switching process. If the cycle through the parameter
space hits a K which exponentially stabilizes (A, B, C), then it follows from (5.11)
that for arbitrary /? > 1 and sufficiently large i 6 N

l | y ( O I I < [ l l y ( 0 ) l l + t " + « * ( < i ) ] e " / ' ~ I ( ' " < l ) ^ a l l t > U , U > 0 ( 5 . 1 2 )

where

k(t) := / ' | |»(*) | | + ||ti(«)||<fa (5.13)
Jo
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ADAPTIVE CONTROL - A SURVEY 351

The inequality (5.12) is used as a main indicator for the switching procedure
presented in the following proposition, see Miller and Davison (1987a, 1988).

THEOREM 5.5. Lei I e N, $ > 1 and

be a function so that h(N) is dense in ffi("t+')x<"»+P). Then the regulation law

u(t) = h(i)y(t), for t€[U,U+i) (5.14)

where the adaptation mechanism is adjusted by the following sequence of switching
times

oo if the above minimum does not exist

is a

that it is

(5.4).

universal adaptive stabilizer for the class (5.9) under the additional assumption
it is known that there exists an Ith order stabilizing compensator of the form

)

Proof. (Sketch) Since im h is dense in ]R(m+')x(m+P), /i(i) will hit a stabilizing
gain. If the decay rate —/?"' in (5.12) is not slow enough, and/or the magnitude of
||y(t)|| is too big, then a switching will occur. However, there is a time tj > ti so
that h(j) is close to h(i) with smaller decay rate and greater bound j , and finally
(5.12) must be satisfied and no switching occurs any more. Then it can be proved
that limt-,oox(t) — 0 and r(-) is bounded. n

REMARK 5.6.

(i) It is possible to modify the controller so that it becomes an adaptive stabilizer
for the class of stabilizable and detectable systems, without the knowledge of
the order of a stabilizing compensator. This can be achieved by an appropriate
search of the controller dimension, cf. Miller and Davison (1988).

(ii) If it is known that a correct Kio lies in an open set S C K(m+')x(">+p)) t n e n

h can be replaced by some h:N—NS SO that h(J8) lies dense in S.

(iii) The controller (5.14) can be modified so that it tolerates bounded disturbances
wi(~) G Cp in the output and bounded and Lebesque measurable u>2(0 in the
input entering the system as in (1.1). The result is then that the signals x(-)
and r ( ) are bounded, only.

An important modification of the controller has been made by Miller and Davison
(1989a). There the controller not only ensures exponential decay of the solution
but also Lyapunov stability, that means for every (A, B, C) belonging to (5.1) there
exists w, M > 0 not depending on the initial data so that the closed loop system
satisfies (5.17). The controller does not have the shortcoming that the map y i—»• ib
is unbounded, cf. Section 3.5, or requires a compactness assumption as in Fu and
Barmish (1986).
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THEOREM 5.7. Let I G N, / ?> l,T > 0 and h(),u() be given as in (5.14). Define

U :=T, fi = eT f \\y(s)\\2ds, U(-) | [ 0 ,T] = 0.
Jo

Then the controller (5.14) with U given by

t _ \ minjf >U-i :

\ oo if the aboviabove minimum does not exist

where

is a universal stabilizer for the class (5.1). Moreover, for every (A,BtC), there
exists M,LJ > 0, t 6 N, not depending on the initial conditions, such that

\\x(t)\\<Me-ut\\x{(})\\ for all t > 0, £(0) € Kn + m (5.17)

and /»(»') switches at most i times.

Proof. (Sketch) The proof is mainly based on the fact that if the closed loop
system is exponentially stable, then 6(t) decays exponentially. (t!)/ie~^>( is a
parametrized family of decaying exponentials increasing in absolute value and de-
creasing in decay rate as i gets larger. Assume that the closed loop system is
exponentially stable. If »'! is not big enough or /?* is not small enough then 6(t) may
not lie below (i!)/*e~/3 *. In this case the switching procedure continues and comes
back to a nearby feedback matrix, but now the bound «! is larger and the decay rate
—/?* is smaller. Thus eventually 8(t) stays below this exponential curve. o

5.2. Tracking and the servomechanism problem

A first contribution to the adaptive tracking problem for non-minimum phase sys-
tems has been made by Martensson (1988). He pointed out that adaptive tracking
of constant reference signals can be achieved for a given class of multivariable sys-
tems if a universal adaptive stabilizer is known and the class is invariant under
precompensation by an integrator.

Miller and Davison (1991b) have shown how to implement an internal model so
that an adaptive stabilizer results in an adaptive tracking controller. This approach
can be extended to non-minimum phase systems as well. For fixed / G N U {0}
consider the class

(5.18)

x(0) G K

for every
(A, B, C, EUE2) G R n x n x R n x m x Wxn x R"*n' x RPxn>, m>p

there exists an Ith order stabilizing compensator of the form (5.2)
for the system (3.30).
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and the class of reference signals

and of disturbance signals

2>:=

a(±)yrej{t) = o |

where the zeros of the monic a 6 K[s] are assumed to lie in C+.
The following theorem by Miller and Davison (1991b) generalizes Martensson's

result presented in Theorem 5.2 and 6.3.

THEOREM 5.8. Let I END {0}, and suppose m = p. Then the adaptive controller
(5.8) or (5.14) together with the compensator (S.S9) is a universal adaptive ser-
vomechanism controller for the class of systems (5.18), of reference signals yrej
and of disturbance signals V.

Based on early results by Miller and Davison (1987a, 1988), an improved controller
with smoother switching mechanism is presented in Miller and Davison (1991b).
Here the internal model is not attached to the output as in Theorem 5.7, but instead
it is attached to the error. It is only assumed that the numbers of outputs are equal
or less than the number of inputs, but a(s) is restricted to have only simple zeros
all of which lying on the imaginary axis. With A* ,B* given as in (3.29) consider
the compensator

Z(t) = A'Z(t) + B-e(t), ((0)€«m f , e(t) = yreJ(t)-y(t) (5.19)

Then the map yref := rt* n - t j j : = is given by

x(t) =

where

A 0
-B"C A*
C 0
0 /

7(0 . 1/(0 = Cx(t) + Fyrej(t), *(0) € Rmp+n (5.20)

* - [ ? ° 1B =

F =

B
0

' F '
0

(5.21)

It can be shown that (A,B,C) is stabilizable and detectable if (A,B,C) is.
Furthermore if a controller of the form (5.4) is applied to (5.21) or equivalently to
the augmented system

= Ax(t) + Bu(t) + Eyrej(t), y(t) = Ci(t) + Fyrcf(t), z(0) 6 Mn+ ' (5.22)

where

E =

A 0
0 0

0

B 0
0 0

, F • [ ; ] •

,C =

K =

C 0
0 /
K J
H G
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then the closed loop system is exponentially stable. So again it remains to find
an algorithm such that K cycles through R("»+')X(">+P) and eventually stops if a
'correct' gain is hit.

THEOREM 5.9. Suppose. I € N and K = {A",},eN is a dense subset 0/R(m+ ')x(m+P).
Then the controller

k(t) = max{-*(<) + \\y(t)\\ + IKOII. IK0II), *(0) € K

u(t) = h(k(t))y(t)

#i if k < 1

is a universal adaptive regulator for all systems (A, B,C, D, E\, E2) belonging to

(5.18) and satisfying rk _, n > n +p for all zeros X of a(X), where a(-)
[ O U J

has simple zeros all of which lie on »TR, and for the class of reference signals yrej
and disturbance signals T>.
The following different class of systems, note that A is stable, has been considered
by Miller and Davison (1987, 1989).

x(t) = Ax(t) + Bu{t) + Eiw, y(t) = Cx(t) + Du{t) + E2w, x(0) e Kn

(A, B, C, D, Eu E2) E Knxn x R n x m x RPxn x RPxm x R n x" ' x RPxn

a(A) CC-, rk[D-CA~1B]=p
(5.23)

For this class, a so called 'low gain controller' is designed which solves the ser-
vomechanism problem for constant reference and disturbance signals. The switching
strategy is similar to that used in Theorem 5.5. More importantly, Miller and Davi-
son (1991c) have proved that the controller can be modified to achieve the same
result under the additional constraint that the space U of input signals consists of
bounded functions and that yrej and w satisfy a feasibility assumption in terms of
(A, B, C, D, EUE2) and the bounds of V.

6. Necessary and sufficient conditions

Byrnes et al. (1986) proved that if asymptotic stabilization can be achieved in an
adaptive context, then Lyapunov stability can be achieved by a linear compensation
if the system parameters are known. More precisely they proved the following
necessary condition of universal adaptive stabilization.

THEOREM 6.1. If the feedback and adaptation rule

u(<) = /(*(<), 1/(0). k(t)=g(k(t),y(t)), *(0)€R (6.1)

where f: R' x RP-*Rm and g:Ulx Kp—»R; are C°° functions, is a universal adaptive
stabilizer for a certain class E of linear systems of the form

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) € R" \
(A, B, C) E R n x n x Mn x m x R' x n J
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then the poles of each system belonging to E can be placed in C_ by some linear
compensator of order I.

A sharpened version of this theorem which guarantees pole placement in C_ is not
available. Immediate consequences of Theorem 6.1 is the following corollary.

COROLLARY 6.2. (i) There is no universal adaptive stabilizer of the form (6.1)
of any order I for the class of stabilizable and detectable m-input, p-ovtput linear
systems.
(ii) There is no universal adaptive stabilizer of the form (6.1) for the class of single-
input single-output minimum phase systems.

The following result by Martensson (1985),(1986) shows that the order of any
linear time-invariant stabilizing regulator is a sufficient information in order to carry
out adaptive stabilization. This result is also an 'almost converse' of Theorem 6.1.

THEOREM 6.3. For every I G N there exists a universal adaptive stabilizer of the
form (6.1) and of order I + 1 for the class of systems

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) G Rn

(A, B, C) € R n x n x mnxm x RPx m so that there exists
(F, G, H, K) G K'x / x H ' X P x Km x ( x M.mxp

i(t) = Fz(t) + Gy(t), u(t) = Hz(t) + Ky(t), z(0) G
which stabilizes (A, B, C)

(6.3)

Martensson (1985) also proved that Theorem 6.1 is no longer valid if the smoothness
assumptions on / and g are dropped. By incorporating an appropriate search
over the dimension of the controller into the adaptation mechanism, he obtains the
following general result.

THEOREM 6.4. A universal adaptive controller exists which stabilizes all minimal
systems of the form (6.2).

Recently Miller (1991) has shown that Theorem 6.1 is also no longer valid if time-
varying stabilizers are allowed. He proved the existence of a smooth, time-varying,
finite-dimensional, nonlinear, adaptive controller which stabilizes every linear, finite-
dimensional, stabilizable and detectable, time-invariant plant with a fixed number
of inputs and outputs.

THEOREM 6.5. There exists an adaptive stabilizer of the form

u(t) = f(k(t),y(t),t), ic(t) = g(k(t),y(t),t), fc(0) G K

where f: K' x W x K—>Stm, g: K' x W x R-JR are infinitely differentiable functions,
for the class of stabilizable and detectable systems of the form (6.2).

Proof. (Sketch) Based on the switching strategy introduced in Miller and Davi-
son (1988), see (5.15), the controller is constructed in several steps. First a sampler
is attached to the output and a zero-order-hold to the input of the stabilizable
and detectable system (A,B,C). For small enough sampling period the sampled
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discrete-time system is stabilizable and detectable. Using a discrete-time result, a
linear periodic controller is given which exponentially stabilizes (A, B, C). Now a
countable dense subset of these controllers is constructed so that for each stablizable
and detectable (j4, B,C) there exists a stabilizing linear periodic controller in this
set. A switching algorithm between these linear time-varying controllers ensures
the existence of an adaptive stabilizer for the whole class. Finally the discontinuous
gain-switching feedback is smoothed out. •

Necessary conditions for the adaptive model reference control problem are given
in Miller and Davison (1991a). There, the model reference problem coincides with
the adaptive tracking problem for the class of reference signals which are produced
by the output of a reference model exited by piecewise continuous bounded inputs.
They consider the class of plants given by

x(t) = Ax(t) + bu(t), y(t) = cx{t), x(0) e R" \
(A, 6, c) e K"x n x Rn x K l x" is stabilizable and detectable J ( '

and the class of reference models (Am, 6m, Cm) which also belongs to (6.4) and satisfy
the additional assumption that Am is stable.

First, Miller and Davison (1991) show the following necessary and sufficient
condition on the non-adaptive model reference control problem.

PROPOSITION 6.6. The non-adaptive model reference control problem is solvable
under certain causality constraints if and only if

(i) the relative degree ofc(sI-A)~1b ts smaller or equal to the relative degree of
cm(sl - Am)~lbm

(ii) every zero of c(sl — A)~lb in C+ is a zero of cm(sl — Am)~1bm of the same
or higher multiplicity.

In Rohrs et al. (1982, 1985) it is shown that many adaptive controllers will
go unstable if the plant has some unmodelled high-frequency dynamics and a rel-
ative degree mismatch occurs. This is not surprising in the light of the following
proposition, shown in Miller and Davison (1991a).

PROPOSITION 6.7. Necessary conditions for solvability of the adaptive model refer-
ence control problem for the class (6.4) are:

(i) A finite upper bound on the relative degree of all systems in (6.J) must be
known.

(ii) The zeros of the uncertain plant on the imaginary axis must lie in a known
finite set.

(Hi) The model reference input is known or if not then the zeros of the uncertain
plant in C+ must lie in a known finite set.
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7. Infinite—dimensional systems

The following results on universal controllers of infinite-dimensional linear sys-
tems generalize results which have been known before for finite-dimensional sys-
tems. Therefore these contributions can be viewed as robustness results showing
that certain adaptive controllers which work for finite-dimensional systems are ro-
bust against certain infinite-dimensional perturbations.

Most approaches use the well-known Willems-Byrnes controller

u = N(k)ky, k=\\y\\2

where N ia a. Nussbaum function, see (2.10).
Logemann and Zwart (1991) consider the class of single-input single-output

systems of the form

i(t) = Ax(t) + bu(t), y(t) = cx(t), i(0) = xo£X,
A generates a strongly continuous semigroup
on a real Banach space X,
b and c are bounded linear operators and cb ^ 0,
the system has no zeros in Re(s) > a for some a < 0,
(A, b) is exponentially stabilizable,
imbcD(A), im C* C D(A*),

(7.1)

where D(A) denotes the domain of A.
Under these assumptions they have shown that the Willems-Byrnes result car-

ries over to infinite-dimensional systems.

THEOREM 7.1. Let N:R^M. be a Nussbaum function, see (2.10). Then

u(t)=N(k(t))k(t)y(t), k(t) = y(t)\ k{0)£R (7.2)

is a universal adaptive stabilizer for the class (7.1).-

Analogous results are proved for different system classes where the last assumption
in (7.1) is replaced by one of the following conditions
- im 6 C D(A2)
- im c* C D(A*2)
- im 6 C D{A) and A generates an analytic semigroup
- im c* C D(A') and A generates an analytic semigroup

Under much more restrictive assumptions (X a Hilbert space, A selfadjoint
and has a complete orthogonal system of eigenvectors and generates an analytic
semigroup) on the class (7.1), Theorem 7.1 has been proved by Kobayashi (1987).
However he considers multi-input multi-output systems but with the assumption
that a(CB) is either lying in the right or left half plane.

Dahleh and Hopkins (1986) show that u = N(k)ky, k = y2 is a universal adap-
tive stabilizer for the class of single-input single-output 'minimum phase' delay
systems satisfying a high frequency condition which generalizes the frequency do-
main relative degree 1 condition. This result has been extended to a considerable
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larger class of systems, feedback laws and gain adaptation mechanisms by Logemann
and Owens (1988a), and to relative degree 2 systems by Dahleh (1989).

Byrnes (1987) considers infinite-dimensional linear systems with bounded in-
finitesimal generator A, thereby excluding 'all' interesting examples.

Dahleh (1988) considers the adaptive stabilization problem for a class of delay
systems which is so restrictive, that interesting cases are not included. This has
been pointed out by Logemann and Martensson (1991), Section 3.

Logemann and Owens (1988) developed an input-output theory of high-gain
adaptive stabilization of infinite-dimensional systems which covers in particular
retarted systems and Volterra integrodifferential systems. A rich class of adaptation
controllers which includes the Willems-Byrnes controller is applied to a large class
of infinite-dimensional systems which satisfy a generalized minimum phase and
relative degree one condition. Memoryless actuator and sensor nonlinearities are
also considered in this approach, and a larger class of nonlinearities is allowed
in Logemann (1990). Due to the large class of nonlinearities in the input and
output lying either in a positive or negative sector, the usual Nussbaum function
is restricted to the class of scaling-invariant Nussbaum functions. The results by
Logemann and Owens (1988) include the results by Dahleh and Hopkins (1986),
Kobayashi (1987), Byrnes (1989), Dahleh (1988). In Logemann (1990) an adaptive
stabilizer for retarded systems is introduced which ensures exponential decay of the
solution of the closed loop system at the price that the minimum phase condition
has to be strengthened, see Section 3.5.

Logemann and Martensson (1990) consider the so called Pritchard-Salamon
class of infinite-dimensional systems with unbounded control and observation and
assume that the systems are exponentially stabilizable and exponentially detectable.
By using switching function controllers the results by Martensson (1985), (1986),
see Section 5.1, are extended to the infinite-dimensional case. The paper is not
based on a high-gain concept, however an application to minimum phase systems
is given.

A contribution to the adaptive servomechanism problem for infinite-dimensional
systems has been made by Logemann and Ilchmann (1991). A class of multi-input
multi-output systems in an input-output description is considered including re-
tarded and integrodifferential systems which contain the class of finite-dimensional
minimum phase systems with high frequency gain det{CB) ^ 0. The paper extends
the finite-dimensional stabilization results by Martensson (1986) and Byrnes and
Willems (1984) to infinite-dimensional systems. Moreover the universal adaptive
regulator solves the servomechanism problem for a class of reference signals consist-
ing of solutions of a differential equation and asymptotic rejection of disturbance
signals including Z/2-functions. The universal regulator uses the internal model
principle as discribed in Section 3.6.
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8. Nonlinear systems

Martensson (1990) considers the universal adaptive stabilization problem for the
class of single-input single-output first order systems of the form

g(x(t))u(t), x (0 )GR \ . >
= 0, ff(«)#0 for all * € » / K '

A necessary condition for adaptive stabilization is given and two universal adaptive
stabilizers are presented. The adaptation and feedback law is chosen piecewise C°°,
instead of a piecewise constant control produced by an algorithmic procedure as
presented in Theorem 5.2.

Adaptive stabilizers for the class (8.1) are also given by Nikitin and Schmid
(1990). In addition they show exponential decay of the solution.

In Khalil and Saberi (1987) and Saberi and Lin (1990) a class of multi-input
multi-output nonlinear systems of known strong relative degree p > 1 is considered.
This is a generalization of linear minimum phase systems of relative degree p where
the spectrum of the high frequency matrix is known to lie in C+. The class covers
in particular pth-order vector differential equations of the form

where M is uniformly bounded and positive definite and / is Lipschitzian. The
adaptive stabilizer consists of a stabilizable and observable realization of a compen-
sator so that the closed loop system is of relative degree 1, cf. Section 4.1, and a
gain adaptation which produces a piecewise constant gain k(-) which is increasing
as long as the output does not satisfy a certain convergence criterion. The idea is
similar to that used for many adaptive stabilizers of linear systems: try a constant
high-gain feedback, if the gain is not high enough a convergence criterion decides
to switch to a higher gain, eventually the closed loop system is stable so that the
convergence criterion is satisfied and no more switching occurs.

In several contributions, E.P. Ryan considers large classes of nonlinear system
and introduces controllers which are based on the Willems-Byrnes controller to-
gether with a Nussbaum function. In Ryan (1990) the following class of nonlinear
systems is considered.

x(t) = Ax{t) + f(x(t)) + az(t), i(t) = g(z(t), z(t)) + bu(t)
(x(0), z(O)) G Kn x R, a G R", / G C(Rn, ima) is linearly bounded
(c, a)b ̂  0 for a known c, (A, 6, c) G R n x n x R" x K l x n is minimum phase
g 6 C(K" x R,M) satisfies \g(x,z)\ < 0y(x,z) for all (x,z) G Rn x R,
for an unknown /? > 0 and known 7 G C(Rn x R,R+)

(8-2)
Note that, by assumption, the nonlinear system is a perturbation of a linear

minimum phase system of relative degree 1.

As opposed to all previously discussed feedback strategies, Ryan (1990) in-
troduces a universal adaptive feedback stabilizer using discontinuous feedback of
x(t),z(t), essentially a sign function, interpreted as a set-valued map. Thus the
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general framework uses the theory of differential inclusions. The stability results
are obtained by using Lyapunov functions and an extension of LaSalle's invariance
principle. A similar approach using discontinuous feedback but for a less general
class than (8.2) has already been introduced by Ryan (1988).

In the same spirit, Ryan (1991) introduces a universal adaptive stabilizer for the
rich class of nonlinear systems modelled by a scalar n-th order differential inclusion
of the form

G(y) is continuous on M" and takes convex and compact values in ffi, >
and the full state (z(t),.. ..z^'^t)) is available for feedback J

(8.3)
This is an extension of results presented in Ryan (1991a). An adaptive stabilizer
for an extension of the class (8.3) and the following class (8.4) to multi-input,
multi-output systems is presented in Ryan (1991b).

The power of the discontinuous feedback approach is demonstrated in Ryan
(1992) where he considers the class of nonlinearly-perturbed, multi-input, multi-
output systems of the form

x(t) = Ax(t) + B[f(t, x(t)) + „(*)] + g(t, *(*)),
y(t) = Cx(t), af(O) € Kn

(A, B, C) € Kn x n x R n x m x Km x n is minimum phase,
c(CB) C C_ or C C+ •
/ , g are Caratheodory
and satisfy, for a known continuous 4> and unknown /j > 0
\\f(t, x)\\ < H<f>{Cx) and \\g(t, x)\\ < j for all x and almost all t.

It is shown that the simple adaptive controller (suitably interpreted)

e(t)], e{t) = y(t) - yref(t) \
/

(8-4)

where N(-) is a Nussbaum function, is a universal adaptive tracking controller for
the class (8.4) and for each reference signal yrej(t) which is absolutely continuous
on compact intervals and has essentially bounded derivative. Surprisingly this ap-
proach is not based on the internal model principle and the class of reference signals
is fairly rich.

9. Conclusion

Over the last 15 years much progress has been made in the field of non-identifier-
based adaptive control. Necessary conditions have been given for the existence
of adaptive controllers, and various adaptive controllers have been designed for
different classes of mainly finite dimensional linear systems and also some nonlinear
and infinite dimensional systems. The nonlinear structure of the controllers has
become simpler.

We have also seen that, roughly speaking, the adaptive controllers can be divided
into two classes, one which uses smooth feedback and adaptation laws, the other
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where the gain in the feedback law is tuned in a piecewise constant manner. The
first approach is more 'elegant' in a mathematical way, the latter one is quite often
easier to analyse. There is no obvious reason to give preference to one approach
over the other.

Adaptive control for finite dimensional linear systems is quite well understood,
many universal adaptive controllers having been presented for different classes of
systems (multi-input multi-output, minimum phase as well as non-minimum phase,
known or unknown relative degree) that not only solve the stabilization problem
but also solve the tracking and servomechanism problems. Robustness properties
have been addressed in most cases.

The extension of these results to infinite dimensional systems is mainly restricted
to the stabilization problem, necessary conditions for the adaptive stabilization
problem are not available. Adaptive control for nonlinear systems is still in its
beginnings. Most authors consider nonlinearly perturbed linear minimum phase
systems.

One shortcoming of many universal adaptive controllers is that they show only
feasibility, with performance of the nonlinear closed loop system being unpredictable
and dependent, in an erratic way, on the initial data. The design of controllers so
that the transient behaviour is improved has only started, and the prediction of
the transient behaviour in terms of the initial conditions is an open problem. For
example, simulations have shown that the terminal system (3.21) is in most cases
exponentially stable. Is there a generic property hidden behind this observation?

There is also a poor understanding how the design of the controller can take
into account inputs and outputs corrupted with noise. More importantly, what can
be achieved, if the class of input signals is constrained?

Finally, a comparison between non-identifier and identifier-based adaptive con-
trol needs further investigation.
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