1. Consider the Z-channel with binary input and output alphabets, $\mathcal{X} = \mathcal{Y} = \{0,1\}$, and with transition probabilities $P_{Y|X}(1|1) = 1$ and $P_{Y|X}(0|0) = P_{Y|X}(1|0) = 1/2$.

(a) Find the capacity
$$C = \max_{P_X} I(X;Y).$$

(b) Let P_Y^* be the unique capacity-achieving output distribution. Explicitly compute the values of $D(P_{Y|X=0} \parallel P_Y^*)$ and $D(P_{Y|X=1} \parallel P_Y^*)$. How do they compare to the value of C?

2. Consider the additive-noise channel $X \rightarrow X + N$, where $N \sim \text{Uniform}[-1,1]$ is independent of X. Find the capacity
$$\max_{X:|X|\leq A \text{ a.s.}} I(X;X+N),$$
where $A \in \mathbb{N}$ is a given integer-valued peak amplitude constraint on X, and find the maximizing distribution on X.

Hint: Use the golden formula with a well-chosen Q_Y.

3. Recall that a channel $P_{Y|X}$ can be thought of as a collection of probability distributions $\{P_{Y|x} : x \in \mathcal{X}\}$. We say that a collection of distributions $\{Q_1, \ldots, Q_N\}$ on \mathcal{Y} is an ε-cover of $P_{Y|X}$ if
$$\sup_{x \in \mathcal{X}} \min_{1 \leq j \leq N} D(P_{Y|x} \parallel Q_j) \leq \varepsilon$$
in other words, if, for each $x \in \mathcal{X}$, we can find some Q_j, such that $D(P_{Y|x} \parallel Q_j) \leq \varepsilon$. Let $N(\varepsilon)$ denote the minimal cardinality of an ε-cover.

(a) Prove that, for every ε, we have the inequality
$$\max_{P_X} I(X;Y) =: C \leq \varepsilon + \log N(\varepsilon).$$

Hint: Let $N = N(\varepsilon)$, consider the minimal ε-cover $\{Q_1, \ldots, Q_N\}$, and apply the saddlepoint characterization to $Q_Y := \frac{1}{N} \sum_{j=1}^N Q_j$.

(b) Prove that, in fact, this bound is tight:

\[C = \inf_{\varepsilon \geq 0} (\varepsilon + \log N(\varepsilon)). \]

Hint: When is \(N(\varepsilon) = 1? \)

4. Let \(X \) and \(Y \) be jointly distributed random variables, where \(X \) takes values in \(\mathcal{X} \) with \(M = |\mathcal{X}| < \infty \). Suppose that we observe \(Y \) and wish to determine the value of \(X \). However, instead of coming up with a single estimate \(\hat{X} \), we generate a list \(G(Y) \subseteq \mathcal{X} \). We then say that an error has occurred if the list \(G(Y) \) does not contain \(X \). Consider the error probability

\[\varepsilon_G := P[X \notin G(Y)]. \]

Suppose that \(|G(Y)| \leq N \) almost surely. Prove the following generalization of Fano's inequality:

\[H(X|Y) \leq (1 - \varepsilon_G) \log N + \varepsilon_G \log M + h(\varepsilon_G), \]

where \(h(\cdot) \) is the binary entropy.

Hint: Consider the random variable \(E := 1\{X \notin G(Y)\} \). Expand the conditional entropy \(H(E,X|Y) \) in two ways using the chain rule.

5. Let \(X = (X_1, X_2, \ldots) \) be a discrete-time random process with discrete alphabet \(\mathcal{X} \). The *entropy rate* of \(X \) is defined as

\[H(X) := \lim_{n \to \infty} \frac{H(X^n)}{n}, \]

if the limit exists. Suppose that \(X \) is a *stationary process*, so all of its finite-dimensional marginal distributions are invariant with respect to shifts – that is, for all \(n, t_1, \ldots, t_n, k \in \mathbb{N} \), the random vectors \((X_{t_1}, \ldots, X_{t_n})\) and \((X_{t_1+k}, \ldots, X_{t_n+k})\) have the same distribution.

(a) Show that the entropy \(H(X^n) \) is *subadditive*, i.e.,

\[H(X^{m+n}) \leq H(X^m) + H(X^n). \]

(b) Use the result from part (a) to prove that

\[H(X) = \inf_{n \geq 1} \frac{H(X^n)}{n}. \]