A key result on the ERM algorithm, proved in the previous lecture, was that

\[P(\hat{f}_n) \leq L^*(\mathcal{F}) + 4\mathbb{E} R_n(\mathcal{F}(Z^n)) + \sqrt{\frac{2\log(1/\delta)}{n}} \]

with probability at least \(1 - \delta \). The quantity \(R_n(\mathcal{F}(Z^n)) \) appearing on the right-hand side of the above bound is the \textit{Rademacher average} of the random set

\[\mathcal{F}(Z^n) = \{ (f(Z_1), \ldots, f(Z_n)) : f \in \mathcal{F} \}, \]

often referred to as the \textit{projection} of \(\mathcal{F} \) onto the sample \(Z^n \). From this we see that a sufficient condition for the ERM algorithm to produce near-optimal hypotheses with high probability is that the expected Rademacher average \(\mathbb{E} R_n(\mathcal{F}(Z^n)) = \tilde{O}(1/n) \), where the \(\tilde{O}(\cdot) \) notation indicates that the bound holds up to polylogarithmic factors in \(n \), i.e., there exists some positive polynomial function \(p(\cdot) \) such that

\[\mathbb{E} R_n(\mathcal{F}(Z^n)) \leq O\left(\sqrt{\frac{p(\log n)}{n}}\right) . \]

Hence, a lot of effort in statistical learning theory is devoted to obtaining tight bounds on \(\mathbb{E} R_n(\mathcal{F}(Z^n)) \). One way to guarantee an \(\tilde{O}(1/n) \) bound on \(\mathbb{E} R_n \) is if the “effective size” of the random set \(\mathcal{F}(Z^n) \) is finite and grows polynomially with \(n \). Then the Finite Class Lemma will tell us that

\[R_n(\mathcal{F}(Z^n)) = O\left(\sqrt{\frac{\log n}{n}}\right) . \]

In general, a reasonable notion of “effective size” is captured by various \textit{covering numbers} (see, e.g., the lecture notes by Mendelson [Men03] or the recent monograph by Talagrand [Tal05] for detailed expositions of the relevant theory). In this lecture, we will look at a simple combinatorial notion of effective size for classes of \textit{binary-valued} functions. This particular notion has originated with the work of Vapnik and Chervonenkis [VC71], and was historically the first such notion to be introduced into statistical learning theory. It is now known as the \textit{Vapnik–Chervonenkis (or VC) dimension}.

1 Vapnik–Chervonenkis dimension: definition

Definition 1. Let \(\mathcal{C} \) be a class of (measurable) subsets of some space \(Z \). We say that a finite set \(S = \{z_1, \ldots, z_n\} \subset Z \) is shattered by \(\mathcal{C} \) if for every subset \(S' \subseteq S \) there exists some \(C \in \mathcal{C} \) such that \(S' = S \cap C \).
In other words, \(S = \{z_1, \ldots, z_n\} \) is shattered by \(\mathcal{C} \) if for any binary \(n \)-tuple \(b = (b_1, \ldots, b_n) \in \{0,1\}^n \) there exists some \(C \in \mathcal{C} \) such that
\[
\{1_{\{z_1 \in C\}}, \ldots, 1_{\{z_n \in C\}}\} = b
\]
or, equivalently, if
\[
\{\{1_{\{z_1 \in C\}}, \ldots, 1_{\{z_n \in C\}}\} : C \in \mathcal{C}\} = \{0,1\}^n,
\]
where we consider any two \(C_1, C_2 \in \mathcal{C} \) as equivalent if \(1_{\{z_i \in C_1\}} = 1_{\{z_i \in C_2\}} \) for all \(1 \leq i \leq n \).

Definition 2. The Vapnik–Chervonenkis dimension (or the VC dimension) of \(\mathcal{C} \) is
\[
V(\mathcal{C}) \triangleq \max \left\{ n \in \mathbb{N} : \exists S \subset Z \text{ such that } |S| = n \text{ and } S \text{ is shattered by } \mathcal{C} \right\}.
\]
If \(V(\mathcal{C}) < \infty \), we say that \(\mathcal{C} \) is a VC class (of sets).

We can express the VC dimension in terms of shatter coefficients of \(\mathcal{C} \): Let
\[
\mathbb{S}_n(\mathcal{C}) \triangleq \sup_{S \subseteq Z, |S| = n} |\{S \cap C : C \in \mathcal{C}\}|
\]
denote the \(n \)th shatter coefficient of \(\mathcal{C} \), where for each fixed \(S \) we consider any two \(C_1, C_2 \in \mathcal{C} \) as equivalent if \(S \cap C_1 = S \cap C_2 \). Then
\[
V(\mathcal{C}) = \max \left\{ n \in \mathbb{N} : \mathbb{S}_n(\mathcal{C}) = 2^n \right\}.
\]
The VC dimension \(V(\mathcal{C}) \) may be infinite, but it is always well-defined. This follows from the following lemma:

Lemma 1. If \(\mathbb{S}_n(\mathcal{C}) < 2^n \), then \(\mathbb{S}_m(\mathcal{C}) < 2^m \) for all \(m > n \).

Proof. Suppose \(\mathbb{S}_n(\mathcal{C}) < 2^n \). Consider any \(m > n \). We will suppose that \(\mathbb{S}_m(\mathcal{C}) = 2^m \) and derive a contradiction. By our assumption that \(\mathbb{S}_m(\mathcal{F}) = 2^m \), there exists \(S = \{z_1, \ldots, z_m\} \in Z^m \), such that for every binary \(n \)-tuple \(b = (b_1, \ldots, b_n) \) we can find some \(C \in \mathcal{C} \) satisfying
\[
\{1_{\{z_1 \in C\}}, \ldots, 1_{\{z_n \in C\}}, 1_{\{z_{n+1} \in C\}}, \ldots, 1_{\{z_{m} \in C\}}\} = (b_1, \ldots, b_n, 0, \ldots, 0).
\]
From (1) it immediately follows that
\[
\{1_{\{z_1 \in C\}}, \ldots, 1_{\{z_n \in C\}}\} = (b_1, \ldots, b_n).
\]
Since \(b = (b_1, \ldots, b_n) \) was arbitrary, we see from (2) that \(\mathbb{S}_n(\mathcal{C}) = 2^n \). This contradicts our assumption that \(\mathbb{S}_n(\mathcal{C}) < 2^n \), so we conclude that \(\mathbb{S}_m(\mathcal{C}) < 2^m \) whenever \(m > n \) and \(\mathbb{S}_n(F) < 2^n \). \(\square \)

There is a one-to-one correspondence between binary-valued functions \(f : Z \to \{0,1\} \) and subsets of \(Z \):
\[
\forall f : Z \to \{0,1\} \text{ let } C_f \triangleq \{z : f(z) = 1\}
\]
\[
\forall C \subseteq Z \text{ let } f_C \triangleq 1_{\{C\}}.
\]
Thus, we can extend the concept of shattering, as well as the definition of the VC dimension, to any class \(\mathcal{F} \) of functions \(f : Z \to \{0,1\} \):
Definition 3. Let \mathcal{F} be a class of functions $f : Z \to \{0, 1\}$. We say that a finite set $S = \{z_1, \ldots, z_n\} \subset Z$ is shattered by \mathcal{F} if it is shattered by the class

$$\mathcal{C}_\mathcal{F} \triangleq \{1_{[f=1]} : f \in \mathcal{F}\},$$

where $1_{[f=1]}$ is the indicator function of the set $C_f \triangleq \{z \in Z : f(z) = 1\}$. The nth shatter coefficient of \mathcal{F} is $\mathbb{S}_n(\mathcal{F}) \triangleq \mathbb{S}_n(\mathcal{C}_\mathcal{F})$, and the VC dimension of \mathcal{F} is defined as $V(\mathcal{F}) = V(\mathcal{C}_\mathcal{F})$.

In light of these definitions, we can equivalently speak of the VC dimension of a class of sets or a class of binary-valued functions.

2 Examples of Vapnik–Chervonenkis classes

2.1 Semi-infinite intervals

Let $Z = \mathbb{R}$ and take \mathcal{C} to be the class of all intervals of the form $(-\infty, t]$ as t varies over \mathbb{R}. We will prove that $V(\mathcal{C}) = 1$. In view of Lemma 1, it suffices to show that (1) any one-point set $S = \{a\}$ is shattered by \mathcal{C}, and (2) no two-point set $S = \{a, b\}$ is shattered by \mathcal{C}.

Given $S = \{a\}$, choose any $t_1 < a$ and $t_2 > a$. Then $(-\infty, t_1] \cap S = \emptyset$ and $(-\infty, t_2] \cap S = S$. Thus, S is shattered by \mathcal{C}. This holds for every one-point set S, and therefore we have proved (1). To prove (2), let $S = \{a, b\}$ and suppose, without loss of generality, that $a < b$. Then there exists no $t \in \mathbb{R}$ such that $(-\infty, t] \cap S = \{b\}$. This follows from the fact that if $b \in (-\infty, t] \cap S$, then $t \geq b$. Since $b > a$, we must have $t > a$, so that $a \in (-\infty, t] \cap S$ as well. Since a and b are arbitrary, we see that no two-point subset of \mathbb{R} can be shattered by \mathcal{C}.

2.2 Closed intervals

Again, let $Z = \mathbb{R}$ and take \mathcal{C} to be the class of all intervals of the form $[s, t]$ for all $s, t \in \mathbb{R}$. Then $V(\mathcal{C}) = 2$. To see this, we will show that (1) any two point set $S = \{a, b\}$ can be shattered by \mathcal{C} and that (2) no three-point set $S = \{a, b, c\}$ can be shattered by \mathcal{C}.

For (1), let $S = \{a, b\}$ and suppose, without loss of generality, that $a < b$. Choose four points $t_1, t_2, t_3, t_4 \in \mathbb{R}$ such that $t_1 < t_2 < a < t_3 < b < t_4$. There are four subsets of S: \emptyset, $\{a\}$, $\{b\}$, and $\{a, b\} = S$. Then

$$[t_1, t_2] \cap S = \emptyset, \quad [t_2, t_3] \cap S = \{a\}, \quad [t_3, t_4] \cap S = \{b\}, \quad [t_1, t_4] \cap S = S.$$

Hence, S is shattered by \mathcal{C}. This holds for every two-point set in \mathbb{R}, which proves (1). To prove (2), let $S = \{a, b, c\}$ be an arbitrary three-point set with $a < b < c$. Then the intersection of any $[t_1, t_2] \in \mathcal{C}$ with S containing a and c must necessarily contain b as well. This shows that no three-point set can be shattered by \mathcal{C}, so by Lemma 1 we conclude that $V(\mathcal{C}) = 2$.

2.3 Closed halfspaces

Let $Z = \mathbb{R}^2$, and let \mathcal{C} consist of all closed halfspaces, i.e., sets of the form

$$\{z = (z_1, z_2) \in \mathbb{R}^2 : w_1 z_1 + w_2 z_2 \geq b\}$$

for all choices of $w_1, w_2, b \in \mathbb{R}$ such that $(w_1, w_2) \neq (0, 0)$. Then $V(\mathcal{C}) = 3$.

To see that $\mathcal{S}_3(\mathcal{C}) = 2^3 = 8$, it suffices to consider any set $S = \{z_1, z_2, z_3\}$ of three non-collinear points. Then it is not hard to see that for any $S' \subseteq S$ it is possible to choose a closed halfspace $C \in \mathcal{C}$ that would contain S', but not S. To see that $\mathcal{S}_4(\mathcal{C}) < 2^4$, we must look at all four-point sets $S = \{z_1, z_2, z_3, z_4\}$. There are two cases to consider:

1. One point in S lies in the convex hull of the other three. Without loss of generality, let’s suppose that $z_1 \in \text{conv}(S')$ with $S' = \{z_2, z_3, z_4\}$. Then there is no $C \in \mathcal{C}$ such that $C \cap S = S'$. The reason for this is that every $C \in \mathcal{C}$ is a convex set. Hence, if $S' \subset C$, then any point in $\text{conv}(S')$ is contained in C as well.

2. No point in S is in the convex hull of the remaining points. This case, when S is an affinely independent set, is shown in Figure 1. Let us partition S into two disjoint subsets, S_1 and S_2, each consisting of “opposite” points. In the figure, $S_1 = \{z_1, z_3\}$ and $S_2 = \{z_2, z_4\}$. Then it is easy to see that there is no halfspace $C \in \mathcal{C}$ whose boundary could separate S_1 from its complement S_2. This is, in fact, the (in)famous “XOR counterexample” of Minsky and Papert [MP69], which has demonstrated the impossibility of universal concept learning by one-layer perceptrons.

Since any four-point set in \mathbb{R}^2 falls under one of these two cases, we have shown that no such set can be shattered by \mathcal{C}. Hence, $V(\mathcal{C}) = 3$.

More generally, if $Z = \mathbb{R}^d$ and \mathcal{C} is the class of all closed halfspaces

$$\left\{ z \in \mathbb{R}^d : \sum_{j=1}^{d} w_j z_j \geq b \right\}$$

for all $w = (w_1, \ldots, w_d) \in \mathbb{R}^d$ such that at least one of the w_j’s is nonzero and all $b \in \mathbb{R}$, then $V(\mathcal{C}) = d + 1$ [WD81]; we will see a proof of this fact shortly.

2.4 Axis-parallel rectangles

Let $Z = \mathbb{R}^2$, and let \mathcal{C} consist of all “axis-parallel” rectangles, i.e., sets of the form $C = [a_1, b_1] \times [a_2, b_2]$ for all $a_1, b_1, a_2, b_2 \in \mathbb{R}$. Then $V(\mathcal{C}) = 4$.

Figure 1: Impossibility of shattering an affinely independent four-point set in \mathbb{R}^2 by closed halfspaces.
First we exhibit a four-point set $S = \{ z_1, z_2, z_3, z_4 \}$ that is shattered by \mathcal{C}. It suffices to take $z_1 = (-2, -1), z_2 = (1, -2), z_3 = (2, 1), z_4 = (-1, 2)$. To show that no five-point set is shattered by \mathcal{C}, consider an arbitrary $S = \{ z_1, z_2, z_3, z_4, z_5 \}$. Of these, pick any one point with the smallest first coordinate and any one point with the largest first coordinate, and likewise for the second coordinate (refer to Figure 2), for a total of at most four. Let S' denote the set consisting of these points; in Figure 2, $S' = \{ z_1, z_2, z_3, z_4 \}$. Then it is easy to see that any $C \in \mathcal{C}$ that contains the points in S' must contain all the points in $S \setminus S'$ as well. Hence, no five-point set in \mathbb{R}^2 can be shattered by \mathcal{C}, so $V(\mathcal{C}) = 5$.

The same argument also works for axis-parallel rectangles in \mathbb{R}^d, i.e., all sets of the form $C = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_d, b_d]$, leading to the conclusion that the VC dimension of the set of all axis-parallel rectangles in \mathbb{R}^d is equal to 2^d.

2.5 Sets determined by finite-dimensional function spaces

The following result is due to Dudley [Dud78]. Let Z be arbitrary, and let \mathcal{G} be an m-dimensional linear space of functions $g : Z \to \mathbb{R}$, which means that each $g \in \mathcal{G}$ has a unique representation of the form

$$g = \sum_{j=1}^{m} c_j \psi_j,$$

where $\psi_1, \ldots, \psi_m : Z \to \mathbb{R}$ form a fixed linearly independent set and c_1, \ldots, c_m are real coefficients. Consider the class

$$\mathcal{C} = \{ \{ z \in Z : g(z) \geq 0 \} : g \in \mathcal{G} \}.$$

Then $V(\mathcal{C}) \leq m$.

To prove this, we need to show that no set of $m+1$ points in Z can be shattered by \mathcal{C}. To that end, let us fix $m+1$ arbitrary points $z_1, \ldots, z_{m+1} \in Z$ and consider the mapping $L : \mathcal{G} \to \mathbb{R}^{m+1}$ defined by

$$L(g) \triangleq (g(z_1), \ldots, g(z_{m+1})).$$

It is easy to see that because \mathcal{G} is a linear space, L is a linear mapping, i.e., for any $g_1, g_2 \in \mathcal{G}$ and any $c_1, c_2 \in \mathbb{R}$ we have $L(c_1 g_1 + c_2 g_2) = c_1 L(g_1) + c_2 L(g_2)$. Since $\dim \mathcal{G} = m$, the image of \mathcal{G} under L, i.e., the set

$$L(\mathcal{G}) = \{ (g(z_1), \ldots, g(z_{m+1})) \in \mathbb{R}^{m+1} : g \in \mathcal{G} \},$$

Figure 2: Impossibility of shattering a five-point set by axis-parallel rectangles.
is a linear subspace of \(\mathbb{R}^{m+1} \) of dimension at most \(m \). This means that there exists some nonzero vector \(\nu = (\nu_1, \ldots, \nu_{m+1}) \in \mathbb{R}^{m+1} \) orthogonal to \(L(\mathcal{G}) \), i.e., for every \(g \in \mathcal{G} \)

\[
v_1 g(z_1) + \ldots + v_{m+1} g(z_{m+1}) = 0. \tag{3}
\]

Without loss of generality, we may assume that at least one component of \(\nu \) is strictly negative (otherwise we can take \(-\nu\) instead of \(\nu \) and still get (3)). Hence, we can rearrange the equality in (3) as

\[
\sum_{i: v_i \geq 0} v_i g(z_i) = - \sum_{i: v_i < 0} v_i g(z_i), \quad \forall g \in \mathcal{G}. \tag{4}
\]

Now let us suppose that \(\mathcal{S}_{m+1}(\mathcal{C}) = 2^{m+1} \) and derive a contradiction. Consider a binary \((m+1)\)-tuple \(b = (b_1, \ldots, b_{m+1}) \in \{0, 1\}^{m+1} \), where \(b_j = 1 \) if and only if \(v_j \geq 0 \), and 0 otherwise. Since we assumed that \(\mathcal{S}_{m+1}(\mathcal{C}) = 2^{m+1} \), there exists some \(g \in \mathcal{G} \) such that

\[
\{1_{g(z_1) \geq 0}, \ldots, 1_{g(z_{m+1}) \geq 0}\} = b.
\]

By our definition of \(b \), this means that the left-hand side of (4) is nonnegative, while the right-hand side is negative, which is a contradiction. Hence, \(\mathcal{S}_{m+1}(\mathcal{C}) \leq 2^{m+1} \), so \(V(\mathcal{C}) \leq m \).

This result can be used to bound the VC dimension of many classes of sets:

- Let \(\mathcal{C} \) be the class of all closed halfspaces in \(\mathbb{R}^d \). Then any \(C \in \mathcal{C} \) can be represented in the form \(C = \{z : g(z) \geq 0\} \) for \(g(z) = \langle w, z \rangle - b \) with some nonzero \(w \in \mathbb{R}^d \) and \(b \in \mathbb{R} \). The set \(\mathcal{G} \) of all such affine functions on \(\mathbb{R}^d \) is a linear space of dimension \(d+1 \), so by the above result we have \(V(\mathcal{C}) \leq d + 1 \). In fact, we know that this holds with equality [WD81]. This can also be seen from the following result, due to Cover [Cov65]: Let \(\mathcal{G} \) be the linear space of functions spanned by functions \(\psi_1, \ldots, \psi_m \), and let \(\{z_1, \ldots, z_n\} \subset Z \) be such that the vectors \(\Psi(z_i) = (\psi_1(z_i), \ldots, \psi_m(z_i)) \), \(1 \leq i \leq n \), form a linearly independent set. Then for the class of sets \(\mathcal{C} = \{z : g(z) \geq 0\} : z \in Z \) we have

\[
|C \cap \{z_1, \ldots, z_n\} : C \in \mathcal{C}| = \sum_{i=0}^{m-1} \binom{n-1}{i}.
\]

The conditions needed for Cover’s result are seen to hold for indicators of halfspaces, so letting \(n = m = d + 1 \) we see that \(\mathcal{S}_d(\mathcal{C}) = \sum_{j=0}^{d} \binom{d}{j} = 2^d \). Hence, \(V(\mathcal{C}) = d + 1 \).

- Let \(\mathcal{C} \) be the class of all closed balls in \(\mathbb{R}^d \), i.e., sets of the form

\[
C = \left\{ z \in \mathbb{R}^d : \|z - x\|^2 \leq r^2 \right\}
\]

where \(x \in \mathbb{R}^d \) is the center of \(C \) and \(r \in \mathbb{R}^+ \) is its radius. Then we can write \(C = \{z : g(z) \geq 0\} \), where

\[
g(z) = r^2 - \|z - x\|^2 = r^2 - \sum_{j=1}^{d} |z_j - x_j|^2. \tag{5}
\]

Expanding the second expression for \(g \) in (5), we get

\[
g(z) = r^2 - \sum_{j=1}^{d} x_j^2 + 2 \sum_{j=1}^{d} x_j z_j - \sum_{j=1}^{d} z_j^2,
\]

which can be written in the form \(g(z) = \sum_{k=0}^{d+2} c_k \psi_k(z) \), where \(\psi_1(z) = 1, \psi_k(z) = z_{k-1} \) for \(k = 2, \ldots, d + 1 \), and \(\psi_{d+2} = \sum_{j=1}^{d} z_j^2 \). It can be shown that the functions \(\{\psi_k\}_{k=1}^{d+2} \) are linearly independent. Hence, \(V(\mathcal{C}) \leq d + 2 \). This bound, however, is not tight; as shown by Dudley [Dud79], the class of closed balls in \(\mathbb{R}^d \) has VC dimension \(d + 1 \).
2.6 VC dimension vs. number of parameters

Looking back at all these examples, one may get the impression that the VC dimension of a set of binary-valued functions is just the number of parameters. This is not the case. Consider the following one-parameter family of functions:
\[g_{\theta}(z) = \sin(\theta z), \quad \theta \in \mathbb{R}. \]

However, the class of sets
\[\mathcal{C} = \{ \{ z \in \mathbb{R} : g_{\theta}(z) \geq 0 \} : \theta \in \mathbb{R} \} \]
has infinite VC dimension. Indeed, for any \(n \), any collection of numbers \(z_1, \ldots, z_n \in \mathbb{R} \), and any binary string \(b \in \{0, 1\}^n \), one can always find some \(\theta \in \mathbb{R} \) such that
\[\text{sgn}(\sin(\theta z_i)) = \begin{cases} +1, & \text{if } b_i = 1 \\ -1, & \text{if } b_i = 0 \end{cases}. \]

3 Growth of shatter coefficients: the Sauer–Shelah lemma

The importance of VC classes in learning theory arises from the fact that, as \(n \) tends to infinity, the fraction of subsets of any \(\{z_1, \ldots, z_n\} \subset Z \) that are shattered by a given VC class \(\mathcal{C} \) tends to zero. We will prove this fact in this section by deriving a sharp bound on the shatter coefficients \(S_n(\mathcal{C}) \) of a VC class \(\mathcal{C} \). This bound have been (re)discovered at least three times, first in a weak form by Vapnik and Chervonenkis [VC71] in 1971, then independently and in different contexts by Sauer [Sau72] and Shelah [She72] in 1972. In strict accordance with Stigler’s law of eponymy\(^1\), it is known in the statistical learning literature as the Sauer–Shelah lemma.

Before we state and prove this result, we will collect some preliminaries and set up some notation. Given integers \(n, d \geq 1 \), let
\[\phi(n, d) = \begin{cases} \sum_{i=0}^{d} \binom{n}{i}, & \text{if } n > d \\ 2^n, & \text{if } n \leq d \end{cases} \]

If we adopt the convention that \(\binom{n}{i} = 0 \) for \(i > n \), we can write
\[\phi(n, d) = \sum_{i=0}^{d} \binom{n}{i} \]
for all \(n, d \geq 1 \). We will find the following recursive relation useful:

Lemma 2.
\[\phi(n, d) = \phi(n - 1, d) + \phi(n - 1, d - 1). \]

Proof. We have
\[\binom{n-1}{i-1} + \binom{n-1}{i} = \frac{(n-1)!}{(i-1)!(n-i)!} + \frac{(n-1)!}{i!(n-i-1)!}. \]

\(^1\)“No scientific discovery is named after its original discoverer” (http://en.wikipedia.org/wiki/Stigler’s_law_of_eponymy)
Multiplying both sides by \(i!(n-i)! \), we obtain

\[
i!(n-i)! \left[\binom{n-1}{i-1} + \binom{n-1}{i} \right] = i(n-1)! + (n-i)(n-1)! = n!
\]

Hence,

\[
\binom{n-1}{i-1} + \binom{n-1}{i} = \frac{n!}{i!(n-i)!} = \binom{n}{i}.
\] (6)

Using the definition of \(\phi(n, d) \), as well as (6), we get

\[
\phi(n, d) = \sum_{i=0}^{d} \binom{n}{i} = 1 + \sum_{i=1}^{d} \binom{n-1}{i} = 1 + \sum_{i=1}^{d} \binom{n-1}{i-1} = \phi(n-1, d) + \phi(n-1, d-1)
\]

and the lemma is proved.

Now for the actual result:

Theorem 1 (Sauer–Shelah lemma). Let \(\mathcal{C} \) be a class of subsets of some space \(Z \) with \(V(\mathcal{C}) = d < \infty \). Then for all \(n \),

\[
\mathbb{S}_n(\mathcal{C}) \leq \phi(n, d).
\] (7)

Proof. There are several different proofs in the literature; we will use an inductive argument following Blumer et al. [BEHW89].

We can assume, without loss of generality, that \(n > d \), for otherwise \(\mathbb{S}_n(\mathcal{C}) = 2^n = \phi(n, d) \). For an arbitrary finite set \(S \subset Z \), let

\[
\mathbb{S}(S, \mathcal{C}) \triangleq |\{S \cap C : C \in \mathcal{C}\}|,
\]

where, as before, we count only the distinct sets of the form \(S \cap C \). By definition, \(\mathbb{S}_n(\mathcal{C}) = \sup_{S:|S|=n} \mathbb{S}(S, \mathcal{C}) \).

Thus, it suffices to prove the following: For any \(S \subset Z \) with \(|S| = n > d \), \(\mathbb{S}(S, \mathcal{C}) \leq \phi(n, d) \).

For the purpose of computing \(\mathbb{S}(S, \mathcal{C}) \), any two \(C_1, C_2 \in \mathcal{C} \) such that \(S \cap C_1 = S \cap C_2 \) are deemed equivalent. Hence, let

\[
\mathcal{A} \triangleq \{A \subseteq S : A = S \cap C \text{ for some } C \in \mathcal{C}\}.
\]

Then we may write

\[
\mathbb{S}(S, \mathcal{C}) = |\{S \cap C : C \in \mathcal{C}\}| = |\{A \subseteq S : A = S \cap C \text{ for some } C \in \mathcal{C}\}| = |\mathcal{A}|.
\]

Moreover, it is easy to see that \(V(\mathcal{A}) \leq V(\mathcal{C}) = d \).

Thus, the desired result is equivalent to saying that if \(\mathcal{A} \) is a collection of subsets of an \(n \)-element set \(S \) (which we may, without loss of generality, take to be \([n] \), \(\{1, \ldots, n\} \) with \(V(\mathcal{A}) \leq d < n \), then \(|\mathcal{A}| \leq \phi(n, d) \). We will prove this statement by "double induction" on \(n \) and \(d \). First of all, the statement (7) holds for all \(n \geq 1 \) and \(d = 0 \). Indeed, if \(V(\mathcal{A}) = 0 \), then \(|\mathcal{A}| = 1 \leq 2^n \). Now assume that (7) holds for all \(n \) and all \(\mathcal{A} \) with \(V(\mathcal{A}) \leq d - 1 \), and for all integers up to \(n - 1 \) and all \(\mathcal{A} \) with \(V(\mathcal{A}) \leq d \). Now let \(S = [n] \), and let \(\mathcal{A} \) be a collection of subsets of \([n] \) with \(V(\mathcal{A}) = d < n \). We will show that \(|\mathcal{A}| \leq \phi(n, d) \).
To prove this claim, let us choose an arbitrary \(i \in S \) and define
\[
\mathcal{A} \setminus i \triangleq \{ A \setminus \{ i \} : A \in \mathcal{A} \}
\]
\[
\mathcal{A}_i \triangleq \{ A \in \mathcal{A} : i \notin A, A \cup \{ i \} \in \mathcal{A} \}
\]
Observe that both \(\mathcal{A} \setminus i \) and \(\mathcal{A}_i \) are classes of subsets of \(S \setminus \{ i \} \). Moreover, since \(A \) and \(A \cup \{ i \} \) map to the same element of \(\mathcal{A} \setminus i \), while \(|\mathcal{A}_i| \) is the number of pairs of sets in \(\mathcal{A} \) that map into the same set in \(\mathcal{A} \setminus i \), we have
\[
|\mathcal{A}| = |\mathcal{A} \setminus i| + |\mathcal{A}_i|.
\]
(8)
Since \(\mathcal{A} \setminus i \subseteq \mathcal{A} \), we have \(V(\mathcal{A} \setminus i) \leq V(\mathcal{A}) \leq d \). Also, every set in \(\mathcal{A} \setminus i \) is a subset of \(S \setminus \{ i \} \), which has cardinality \(n - 1 \). Therefore, by the inductive hypothesis \(|\mathcal{A} \setminus i| \leq \phi(n - 1, d) \). Next, we show that \(V(\mathcal{A}_i) \leq d - 1 \). Suppose, to the contrary, that \(V(\mathcal{A}_i) = d \). Then there must exist some \(T \subseteq S \setminus \{ i \} \) with \(|T| = d \) that is shattered by \(\mathcal{A}_i \). But then \(T \cup \{ i \} \) is shattered by \(\mathcal{A} \). To see this, given any \(T' \subseteq T \) choose some \(A \in \mathcal{A}_i \) such that \(T \cap A = T' \) (this is possible since \(T \) is shattered by \(\mathcal{A}_i \)). But then \(A \cup \{ i \} \in \mathcal{A} \) (by definition of \(\mathcal{A}_i \)), and
\[
(T \cup \{ i \}) \cap (A \cup \{ i \}) = (T \cap A) \cup \{ i \} = T' \cup \{ i \}.
\]
Since this is possible for an arbitrary \(T' \subseteq T \), we conclude that \(T \cup \{ i \} \) is shattered by \(\mathcal{A} \). Now, since \(T \subseteq S \setminus \{ i \} \), we must have \(i \neq T \), so \(|T \cup \{ i \}| = |T| + 1 = d + 1 \), which means that there exists a \((d + 1) \)-element subset of \(S = [n] \) that is shattered by \(\mathcal{A} \). But this contradicts our assumption that \(V(\mathcal{A}) \leq d \). Hence, \(V(\mathcal{A}_i) \leq d - 1 \). Since \(\mathcal{A}_i \) is a collection of subsets of \(S \setminus \{ i \} \), we must have \(|\mathcal{A}_i| \leq \phi(n - 1, d - 1) \) by the inductive hypothesis. Hence, from (8) and from Lemma 2 we have
\[
|\mathcal{A}| = |\mathcal{A} \setminus i| + |\mathcal{A}_i| \leq \phi(n - 1, d) + \phi(n - 1, d - 1) = \phi(n, d).
\]
This completes the induction argument and proves (7). \(\square \)

Corollary 1. If \(\mathcal{C} \) is a collection of sets with \(V(\mathcal{C}) \leq d < \infty \), then
\[
\mathcal{S}_n(\mathcal{C}) \leq (n + 1)^d.
\]
Moreover, if \(n \geq d \), then
\[
\mathcal{S}_n(\mathcal{C}) \leq \left(\frac{en}{d} \right)^d,
\]
where \(e \) is the base of the natural logarithm.

Proof. For the first bound, write
\[
\phi(n, d) = \sum_{i=0}^{d} \binom{n}{i} = \sum_{i=1}^{d} \frac{n!}{i!(n-i)!} \leq \sum_{i=1}^{d} \frac{n^i}{i!} \leq \sum_{i=0}^{d} \frac{n^i d^i}{i!(d-i)!} = \sum_{i=0}^{d} \frac{n^i}{i!} \binom{d}{i} = (n + 1)^d,
\]
where the last step uses the binomial theorem. On the other hand, if \(d/n \leq 1 \), then
\[
\left(\frac{d}{n} \right)^d \phi(n, d) = \left(\frac{d}{n} \right)^d \sum_{i=0}^{d} \binom{n}{i} \leq \sum_{i=1}^{n} \left(\frac{d}{n} \right)^i \binom{n}{i} \leq \sum_{i=1}^{n} \left(\frac{d}{n} \right)^i \binom{n}{i} = \left(1 + \frac{d}{n} \right)^n \leq e^d,
\]
where we again used the binomial theorem. Dividing both sides by \((d/n)^d \), we get the second bound. \(\square \)
Let \mathcal{C} be a VC class of subsets of some space Z. From the above corollary we see that

$$\limsup_{n \to \infty} \frac{S_n(\mathcal{C})}{2^n} \leq \lim_{n \to \infty} \frac{(n+1)^{V(\mathcal{C})}}{2^n} = 0.$$

In other words, as n becomes large, the fraction of subsets of an arbitrary n-element set $\{z_1, \ldots, z_n\} \subset Z$ that are shattered by \mathcal{C} becomes negligible. Moreover, combining the bounds of the corollary with the Finite Class Lemma for Rademacher averages, we get the following:

Theorem 2. Let \mathcal{F} be a VC class of binary-valued functions $f : Z \to \{0, 1\}$ on some space Z. Let Z^n be an i.i.d. sample of size n drawn according to an arbitrary probability distribution $P \in \mathcal{P}(Z)$. Then

$$\mathbb{E} R_n(\mathcal{F}(Z^n)) \leq 2\sqrt{\frac{V(\mathcal{F}) \log(n+1)}{n}}.$$

A more refined chaining technique [Dud78] can be used to remove the logarithm in the above bound:

Theorem 3. There exists an absolute constant $C > 0$, such that under the conditions of the preceding theorem

$$\mathbb{E} R_n(\mathcal{F}(Z^n)) \leq C\sqrt{\frac{V(\mathcal{F})}{n}}.$$

References

