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In the last lecture, we have left off with a theorem that gave a sufficient condition for the Empirical
Risk Minimization (ERM) algorithm

f̂n = argmin
f ∈F

PZ n (` f ) (1)

= argmin
f ∈F

1

n

n∑
i=1

`(Yi , f (Xi )) (2)

to be PAC for a given learning problem with hypothesis space F and loss function `. This condition
pertained to the behavior of the uniform deviation of empirical means from true means over the induced
class LF = {` f : f ∈F }. Specifically, we proved that ERM is a PAC algorithm if

lim
n→∞ sup

P∈P
P n

(
sup
f ∈F

∣∣PZ n (` f )−P (` f )
∣∣≥ ε)= 0, ∀ε> 0, (3)

where P is the class of probability distributions generating the training data.

1 An abstract framework for ERM

To study ERM in a general framework, we will adopt a simplified notation often used in the literature.
We have a space Z and a class F of functions f : Z→ [0,1]. Let P (Z) denote the space of all probability
distributions onZ. For each sample size n, the training data are in the form of an n-tuple Z n = (Z1, . . . , Zn)
of Z-valued random variables drawn according to some unknown P ∈ P . For each P , we can compute
the expected risk of any f ∈F by

P ( f ) = EP f (Z ) =
∫
Z

f (z)P (dz). (4)

The minimum risk over F is

L∗
P (F ), inf

f ∈F
P ( f ). (5)

A learning algorithm is a sequence A = {An}n≥1 of mappings An :Zn →F , and the objective is to ensure
that

P ( f̂n) ≈ L∗
P (F ) eventually with high probability. (6)
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The ERM algorithm works by taking

f̂n = argmin
f ∈F

PZ n ( f ) (7)

= argmin
f ∈F

1

n

n∑
i=1

f (Zi ). (8)

This way of writing down our problem hides most of the ingredients that were specified in Haussler’s
framework of model-free learning, so it is important to keep in mind that Z is an input/output pair (X ,Y )
and the functions f ∈ F are really the induced losses for some loss function ` and hypothesis class G .
However, recalling our discussion of unsupervised learning problems in the first lecture, we do not insist
on splitting Z into input X and output Y , nor do we need to imagine any particular structure for f .

We have already seen that the consistency of ERM hinges on the uniform deviation behavior of em-
pirical means in F . In order to have a clean way of keeping track of all the relevant quantities, let us
introduce some additional notation. First of all, we need a way of comparing the behavior of any two
probability distributions P and P ′ on the class F . A convenient way of doing this is through the F -
seminorm

‖P −P ′‖F , sup
f ∈F

|P ( f )−P ′( f )| (9)

= sup
f ∈F

∣∣EP f −EP ′ f
∣∣ (10)

= sup
f ∈F

∣∣∣∣∫
Z

f (z)P (dz)−
∫
Z

f (z)P ′(dz)

∣∣∣∣ . (11)

We say that ‖ · ‖F is a seminorm because it has all the properties of a norm (in particular, it satisfies the
triangle inequality), but it may happen that ‖P −P ′‖F = 0 for P 6= P ′. Next, given a random sample Z n

we define the uniform deviation

∆n(Z n), ‖PZ n −P‖F ≡ sup
f ∈F

∣∣PZ n ( f )−P ( f )
∣∣ . (12)

To keep things simple, we do not indicate the underlying distribution P or the function class F explicitly.
We will do this from now on, unless some confusion is possible, in which case we will use appropriate
indices. Thus, we will write L( f ), L∗(F ), etc., and you should always keep in mind that all expectations
are computed w.r.t. the (unknown) data-generating distribution P ∈ P (Z). In the same spirit, we will
denote by Pn( f ) the empirical risk of f on the sample Z n :

Pn( f ) =PZ n ( f ) = 1

n

n∑
i=1

f (Zi ). (13)

The following result is key to understanding the role of the uniform deviations ∆n(Z n) in controlling the
performance of the ERM algorithm.

Proposition 1. The ERM algorithm satisfies the following inequalities:

P ( f̂n) ≤ L∗(F )+2∆n(Z n) (14)

P ( f̂n) ≤ Pn( f̂n)+∆n(Z n). (15)
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Proof. We have already proved the two inequalities of the proposition in the last lecture, except now they
are written in our new abstract notation. Let us give the proof again in order to get comfortable with the
notation. Let f ∗ be any minimizer of P ( f ) over F . Then

P ( f̂n)−L∗(F ) = P ( f̂n)−P ( f ∗) (16)

= P ( f̂n)−Pn( f̂n)+Pn( f̂n)−Pn( f ∗)+Pn( f ∗)−P ( f ∗), (17)

where Pn( f̂n)−Pn( f ∗) ≤ 0 by definition of ERM,

P ( f̂n)−Pn( f̂n) ≤ sup
f ∈F

[
Pn( f )−P ( f )

]≤ ‖Pn −P‖F =∆n(Z n), (18)

and the same holds for Pn( f ∗)−P ( f ∗). This proves both (14) and (15).

The bound (14) says that, if the uniform deviation∆n(Z n) is small, then the expected risk of the ERM
hypothesis will be close to the minimum risk L∗(F ); in addition, the bound (15) says that the empirical
estimate Pn( f̂n) is an accurate estimate of the generalization performance of f̂n . Both bounds suggest
that the success of ERM depends on how small the uniform deviation ∆n(Z n) can be. Thus, we need to
develop tools for analyzing the behavior of ∆n(Z n).

2 Bounding the uniform deviation: Rademacher averages

It turns out that the behavior of the uniform deviation ∆n(Z n) is closely connected to how the values of
the functions f ∈F on randomly selected n-tuples Z n correlate with random signs. Intuitively, this can
be motivated as follows. In order for ERM to succeed, the function class F has to be “discriminating:”
we should be able to clearly separate all near-minimizers of the empirical risk from functions whose
empirical risks (and hence expected risks) are high, but only if the sample is representative of the true
data-generating distribution. If the class F is discriminating not only on the actual sample, but also on
its random perturbations, then we cannot expect the empirical risks to truly reflect the generalization
ability of the functions in F . As we will soon see, the degree of correlation of the “projections” of F onto
random samples with random signs is captured by the quantities known as the Rademacher averages.

First, we need some preparatory results. Let Y be a real-valued random variable. We say that it is
symmetric if −Y has the same distribution as Y . This is equivalent to saying that

P(Y ≥ a) =P(Y ≤−a), ∀a ∈R. (19)

A random variableσ taking values −1 or +1 with probability 1/2 is called a Rademacher random variable.

Lemma 1. Let U and U ′ be two i.i.d. real-valued random variables. Then Y =U −U ′ is symmetric.

Proof. Let F (u) =P(U ≥ u). Then

P(Y ≥ a) =P(U −U ′ ≥ a) (20)

= E
[
E
[

1{U−U ′≥a}

∣∣∣U ′
]]

(21)

= EF (a +U ′) (22)

= EF (a +U ), (23)

where the last line is because U and U ′ are i.i.d. An analogous calculation for P(Y ≤−a) gives the same
result.
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Lemma 2. Let Y be a symmetric random variable, and let σ be a Rademacher random variable indepen-
dent of Y . Then W =σY has the same distribution as Y .

Proof. Direct calculation:

P(W ≤ a) = 1

2
P(Y ≤ a)+ 1

2
P(Y ≥−a) =P(Y ≤ a), (24)

where the second step is due to the symmetry of Y . Since this holds for an arbitrary a ∈ R, we conclude
that W has the same distribution as Y .

Corollary 1. Let Y1, . . . ,Yn be n independent symmetric random variables, and let σ1, . . . ,σn be indepen-
dent Rademacher random variables that are also independent of the Yi ’s. Then the sum Y1 + . . .+Yn has
the same distribution as σ1Y1 + . . .+σnYn .

Now we are ready to define Rademacher averages.

Definition 1. The Rademacher average of a bounded set A ⊂Rn is

Rn(A ), E sup
a∈A

∣∣∣∣∣ 1

n

n∑
i=1

σi ai

∣∣∣∣∣ , (25)

where the expectation is over n i.i.d. Rademacher random variables σ1, . . . ,σn .

Now consider a class F of functions f :Z→ [0,1] from our formulation of the ERM problem. The key
result, which we will now prove, is that the uniform deviations∆n(Z n) are controlled by the Rademacher
averages of the random sets

F (Z n),
{(

f (Z1), . . . , f (Zn)
)

: f ∈F
}

. (26)

A useful way to think about F (Z n) is as a “projection” of F onto the random sample Z n .

Theorem 1. Fix a space Z and let F be a class of functions f :Z→ [0,1]. Then for any P ∈P (Z)

E∆n(Z n) ≤ 2ERn(F (Z n)). (27)

Proof. The proof uses a clever technique known as “symmetrization," which goes back to the seminal
work of Vapnik and Chervonenkis [VC71], but in its modern form is due to Giné and Zinn [GZ84]. The
main idea is as follows. Consider a random i.i.d. sample Z n from P and introduce an independent
“ghost” sample Z

n = (Z 1, . . . , Z n) from the same P . We will denote expectations w.r.t. Z
n

by E. Let P n

denote the empirical distribution of Z
n

. Then for any bounded function g :Z→R we can write

P (g ) = E
[

1

n

n∑
i=1

g (Z i )

]
= EP n(g ). (28)

With this, we have

∆n(Z n) = ‖Pn −P‖F (29)

= sup
f ∈F

∣∣Pn( f )−P ( f )
∣∣ (30)

= sup
f ∈F

∣∣∣Pn( f )−EP n( f )
∣∣∣ (31)

≤ sup
f ∈F

E
∣∣∣Pn( f )−P n( f )

∣∣∣ (32)

≤ E sup
f ∈F

∣∣∣Pn( f )−P n( f )
∣∣∣ , (33)
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where the first inequality uses convexity of the absolute value function, while the second is because
supE[·] ≤ Esup[·]. Now let us take expectations of both sides w.r.t. Z n to get

E∆n(Z n) ≤ E sup
f ∈F

∣∣∣Pn( f )−P n( f )
∣∣∣ , (34)

where now the expectation on the right is w.r.t. both Z n and Z
n

, which are independent of each other.
Let us inspect the difference Pn( f )−P n( f ):

Pn( f )−P n( f ) = 1

n

n∑
i=1

[
f (Zi )− f (Z i )

]
. (35)

For each i Zi and Z i are i.i.d., so the differences f (Zi )− f (Z i ) are symmetric by Lemma 1. Introducing n
i.i.d. Rademacher random variablesσ1, . . . ,σn independent of Z n and Z

n
, from Corollary 1 we know that

1

n

n∑
i=1

[
f (Zi )− f (Z i )

]
d= 1

n

n∑
i=1

σi

[
f (Zi )− f (Z i )

]
, (36)

where
d= means “equality in distribution.” The same holds if we take the supremum of both sides over

f ∈F . Hence,

E sup
f ∈F

∣∣∣Pn( f )−P n( f )
∣∣∣= E sup

f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

[
f (Zi )− f (Z i )

]∣∣∣∣∣ (37)

= E sup
f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

σi

[
f (Zi )− f (Z i )

]∣∣∣∣∣ , (38)

where in the last line the expectation is over Z n , Z
n

, and σn = (σ1, . . . ,σn). Now note that

E sup
f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

σi

[
f (Zi )− f (Z i )

]∣∣∣∣∣≤ E sup
f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

σi f (Zi )

∣∣∣∣∣+E sup
f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

σi f (Z i )

∣∣∣∣∣ (39)

= 2E sup
f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

σi f (Zi )

∣∣∣∣∣ , (40)

where the first line is by the triangle inequality and the second line uses the fact that Z n has the same
distribution as Z

n
. Now, since Z n and σn are independent,

E sup
f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

σi f (Zi )

∣∣∣∣∣= EZ nEσn sup
f ∈F

∣∣∣∣∣ 1

n

n∑
i=1

σi f (Zi )

∣∣∣∣∣= ERn(F (Z n)). (41)

This completes the proof.

The above theorem implies the following key result on ERM:

Corollary 2. For any P ∈P (Z) and any n, the ERM hypothesis f̂n satisfies the bound

P ( f̂n) ≤ L∗(F )+4ERn(F (Z n))+
√

2log
( 1
δ

)
n

(42)

with probability at least 1−δ.
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Proof. From Theorem 1 it follows that, for any t > 0,

P
(
∆n(Z n) ≥ 2ERn(F (Z n))+ t

)
≤P

(
∆n(Z n) ≥ E∆n(Z n)+ t

)
. (43)

The uniform deviation ∆(Z n) has the bounded differences property with c1 = . . . = cn = 1/n. Hence, by
McDiarmid’s inequality

P
(
∆n(Z n) ≥ E∆n(Z n)+ t

)
≤ e−2nt 2

.

Letting t =
√

log(1/δ)
2n , we see that

∆n(Z n) ≤ E∆n(Z n)+
√

log(1/δ)

2n

with probability at least 1−δ. Together with (43), this implies that

∆n(Z n) ≤ 2ERn(F (Z n))+
√

log(1/δ)

2n
(44)

with probability at least 1−δ. Combining this with the first bound of Proposition 1, we conclude that

P ( f̂n) ≤ L∗(F )+4ERn(F (Z n))+
√

2log(1/δ)

n
(45)

with probability at least 1−δ.

3 Structural results for Rademacher averages

The results developed above highlight the fundamental role played by Rademacher averages in bounding
the generalization error of the ERM algorithm. In order to use these bounds, we need to get a better
handle on the behavior of Rademacher averages.

Lemma 3 (Basic properties of Rademacher averages). Let A and B be bounded subsets of Rn , and let
c ∈R be a constant. Then

Rn(A ∪B) ≤ Rn(A )+Rn(B) (46)

Rn(cA ) = |c|Rn(A ) (47)

Rn(A +B) ≤ Rn(A )+Rn(B), (48)

where cA , {ca : a ∈A } and A +B , {a +b : a ∈A ,b ∈B}. Moreover, let

convA ,

{
N∑

m=1
cm am : N ∈N; am ∈A ;cm ≥ 0,∀m;

N∑
m=1

cm = 1

}
(49)

be the convex hull of A and

absconvA ,

{
N∑

m=1
cm am : N ∈N; am ∈A ;

n∑
m=1

|cm | ≤ 1

}
(50)

be the absolute convex hull of A . Then

Rn(A ) = Rn(convA ) = Rn(absconvA ). (51)
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Proof. The proof is by direct calculation. First of all, by double-counting,

Rn(A ∪B) = E sup
v∈A∪B

∣∣∣∣∣ 1

n

n∑
i=1

σi vi

∣∣∣∣∣ (52)

≤ E sup
a∈A

∣∣∣∣∣ 1

n

n∑
i=1

σi ai

∣∣∣∣∣+Esup
b∈B

∣∣∣∣∣ 1

n

n∑
i=1

σi bi

∣∣∣∣∣ (53)

= Rn(A )+Rn(B). (54)

The case of cA is obvious. For A +B,

Rn(A +B) = E sup
v∈A+B

∣∣∣∣∣ 1

n

n∑
i=1

σi vi

∣∣∣∣∣ (55)

= E sup
a∈A ,b∈B

∣∣∣∣∣ 1

n

n∑
i=1

σi (ai +bi )

∣∣∣∣∣ (56)

≤ E sup
a∈A

∣∣∣∣∣ 1

n

n∑
i=1

σi ai

∣∣∣∣∣+Esup
b∈B

∣∣∣∣∣ 1

n

n∑
i=1

σi bi

∣∣∣∣∣ (57)

= Rn(A )+Rn(B), (58)

where the third step uses the triangle inequality.
Finally, consider the absolute convex hull of A . Since A ⊂ absconvA , Rn(A ) ≤ Rn(absconvA ). On

the other hand, fix some N ∈N and N real numbers c1, . . . ,cN such that
∑N

m=1 |cm | = 1, and consider the
set

c1A + . . .+ cN A ≡ {c1a1 + . . .+ cN aN : a1, . . . , aN ∈A } . (59)

Then

Rn(c1A + . . .+ cN A ) ≤
N∑

i=1
|ci |Rn(A ) ≤ Rn(A ). (60)

Since absconvA is the union of all sets of the form (59) for all choices of N and {cm}N
m=1, we see that

Rn(absconvA ) ≤ Rn(A ). Therefore, Rn(A ) = Rn(absconvA ). Since A ⊂ convA ⊂ absconvA , the same
equality holds for the convex hull of A .

The properties listed in the lemma show what happens to Rademacher averages when we form com-
binations of sets. This will be useful to us later, when we talk about hypothesis classes made up of simpler
classes by means of operations like set-theoretic unions, intersections, complements or differences, log-
ical connectives, or convex and linear combinations.

The next result, often referred to as the Finite Class Lemma, is very important:

Lemma 4 (Finite class lemma). If A = {a(1), . . . , a(N )} ⊂Rn is a finite set with ‖a( j )‖ ≤ L for all j = 1, . . . , N
and N ≥ 2, then

Rn(A ) ≤ 2L
√

log N

n
. (61)
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Proof. Let σn be n i.i.d. Rademacher variables, and for every j ∈ 1, . . . , N let

Y j ,
1

n

n∑
i=1

σi a( j )
i . (62)

Then for any s > 0

Ee sY j = Eexp

(
s

n

n∑
i=1

σi a( j )
i

)
=

n∏
i=1

Ee sσi a( j )
i /n , (63)

where the second step uses the fact thatσn are i.i.d. For each i , the random variableσi a( j )
i has zero mean

and is bounded between −a( j )
i and a( j )

i , so by the Hoeffding bound we have

Ee sσi a( j )
i /n ≤ exp

(
s2|a( j )

i |2
2n2

)
. (64)

Therefore,

Ee sY j ≤
n∏

i=1
exp

(
s2|a( j )

i |2
2n2

)
= exp

(
s2

2n2

n∑
i=1

|a( j )
i |2

)
= exp

(
s2‖a( j )‖2

2n2

)
≤ exp

(
s2L2

2n2

)
. (65)

Repeating the same argument for each −Y j , we see that

Ee−sY j ≤ exp

(
s2L2

2n2

)
. (66)

Now we recall the following statement, which was given as a homework problem in Spring 2011 at Duke
University1: Let U1, . . . ,UK be K random variables (not necessarily independent) that are subgaussian
with parameter v > 0, i.e.,

E[e sUk ] ≤ e s2v2/2, ∀s > 0. (67)

Then

E

[
max

1≤k≤K
Uk

]
≤ v

√
2logK . (68)

Consider now the 2N random variables Y1,−Y1, . . . ,YN ,−YN . According to (65) and (66), they are sub-
gaussian with parameter v = L/n. Hence,

E

[
max

1≤ j≤N
|Y j |

]
= E [max(Y1,−Y1, . . . ,YN ,−YN )] ≤ L

√
2log(2N )

n
≤ 2L

√
log N

n
, (69)

where the last step uses the fact that, since N ≥ 2, 2N ≤ N 2. Finally,

Rn(A ) = E
[

max
1≤ j≤N

∣∣∣∣∣ 1

n

n∑
i=1

σi a( j )
i

∣∣∣∣∣
]
= E

[
max

1≤ j≤N
|Y j |

]
≤ 2L

√
log N

n
, (70)

which is what we wanted to prove.

1See Problem 2 in http://maxim.ece.illinois.edu/teaching/spring11/homework/homework 1.pdf

8



We will start exploring the implications of the Finite Class Lemma more fully in the next lecture, but
we can give a brief preview here. Consider a learning problem of the type described in Section 1 in the
special case when F consists of binary-valued functions on Z, i.e., F = {

f :Z→ {0,1}
}
. From Theorem 1,

we know that

E∆n(Z n) ≤ 2ERn(F (Z n)), (71)

where

F (Z n),
{(

f (Z1), . . . , f (Zn)
)

: f ∈F
}

. (72)

Note that because each f can take values 0 or 1, F (Z n) ⊆ {0,1}n . Moreover, since for any Z n ∈ Zn and
any f ∈F we have √

n∑
i=1

| f (Zi )|2 ≤p
n, (73)

the set F (Z n) for a fixed Z n satisfies the conditions of the Finite Class Lemma with N = |F (Z n)| ≤ 2n

and L =p
n. Hence,

Rn(F (Z n)) ≤ 2

√
log |F (Z n)|

n
. (74)

In general, since log |F (Z n)| ≤ n, the bound just says that Rn(F (Z n)) ≤ 2, which is not that useful. How-
ever, as we will see in the next few lectures, for a broad range of binary function classes F it will not be
possible to pick out every single element in {0,1}n by taking the random “slices” F (Z n), provided n is
sufficiently large. To make these notions precise, let us define the quantity

Sn(F ), sup
zn∈Zn

|F (zn)|, (75)

which is called the nth shatter coefficient of F . Then we have the bound

Rn(F (Z n)) ≤ 2

√
logSn(F )

n
. (76)

Next, let

V (F ),max
{
n ∈N :Sn(F ) = 2n}

. (77)

This number is the famous Vapnik–Chervonenkis (or VC) dimension of F , which has originated in their
work [VC71]. It is clear that if Sn(F ) < 2n for some n, then Sm(F ) < 2m for all m > n. Hence, V (F ) is
always well-defined (though it may be infinite). When it is finite, we say that F is a VC class. What this
means is that, for n large enough, a certain structure emerges in the sets F (zn), which prevents us from
being able to form any combination of binary labels by sweeping through the entire F . A fundamental
result, which was independently derived by Sauer [Sau72] and Shelah [She72] in different contexts (com-
binatorics and mathematical logic respectively) and also appeared in a weaker form in the original work
of Vapnik and Chervonenkis [VC71], says the following:
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Lemma 5 (Sauer–Shelah). If F is a VC class, i.e., V (F ) <∞, then

Sn(F ) ≤
V (F )∑
i=1

(
n

i

)
≤ (n +1)V (F ). (78)

Thus, we arrive at the following important result, which we will revisit in the next lecture:

Theorem 2. If F is a VC class of binary functions, then

ERn(F (Z n)) ≤ 2

√
V (F ) log(n +1)

n
. (79)

Consequently, for a VC class F , the risk of ERM computed on an i.i.d. sample of size n from an
arbitrary distribution P ∈P (Z) is bounded by

P ( f̂n) ≤ L∗(F )+8

√
V (F ) log(n +1)

n
+

√
2log

( 1
δ

)
n

(80)

with probability at least 1−δ. In fact, using a much more refined technique called chaining originating
in the work of Dudley [Dud78], it is possible to remove the logarithm in (79) to obtain the bound

ERn(F (Z n)) ≤C

√
V (F )

n
, (81)

where C > 0 is some universal constant independent of n and F . We will not cover chaining in this class,
but we will use the above formula.
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