
Homework 2: Solutions

October 8, 2015

1 The joys of symmetry

(a) We prove the following proposition. The claim that Z is symmetric then follows by induction.

Proposition 1. If Y is a symmetric random variable and X is a Rademacher random variable
independent of Y , then for any real constant r, the random variable Y + rX is symmetric.

Proof. Let Z , Y + rX. For any z ∈ R,

P[Z ≤ z] =
1

2
P[Y + r ≤ z] +

1

2
P[Y − r ≤ z]

=
1

2
P[−Y ≤ z − r] +

1

2
P[−Y ≤ z + r] = P[−Z ≤ z],

where the second step is due to the symmetry of Y . This proves that Y +rX is symmetric.

Now we prove that E[Z4] ≤ 3(E[Z2])2. We have

E[Z2] = E
[ n∑

i=1

r2i

]
+ E

[
2

n∑
i=1

∑
j>i

rirjXiXj

]
=

n∑
i=1

r2i .

Furthermore,

E[Z4] = E
[( n∑

i=1

r2i

)2]
+ E

[
4
( n∑

i=1

r2i

)( n∑
i=1

∑
j>i

rirjXiXj

)]
+ E

[
4
( n∑

i=1

∑
j>i

rirjXiXj

)2]
=
( n∑

i=1

r2i

)2
+ 0 + 4

n∑
i=1

∑
j>i

r2i r
2
j ≤

( n∑
i=1

r2i

)2
+ 2
( n∑

i=1

r2i

)( n∑
j=1

r2j

)
= 3E[Z2].

(b) For any t ≥ 0,

P[S|X| ≤ t] =
1

2
P[|X| ≤ t] +

1

2
P[−|X| ≤ t] =

1

2
P[|X| ≤ t] +

1

2
=

1

2
(P[X ≤ t]− P[X < −t]) +

1

2

=
1

2
P[X ≤ t] +

1

2
(P[X ≥ −t] = P[X ≤ t].

For any t < 0,

P[S|X| ≤ t] =
1

2
P[|X| ≤ t] +

1

2
P[−|X| ≤ t] =

1

2
P[|X| ≥ −t] =

1

2
(P[X ≥ −t] + P[X ≤ t]) = P[X ≤ t].

Thus we have shown that for all t ∈ R, P[S|X| ≤ t] = P[X ≤ t].
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2 Indicator functions for fun and profit

(a) Since X is nonnegative, for any t > 0,

E[X ∧ t] = E[(X ∧ t)1{X > t}] + E[(X ∧ t)1{X ≤ t}] ≥ tP[X > t] + 0.

It follows that P[X > t] ≤ E[X ∧ t]/t for any t > 0.

(b) We have
P[X > t] = P[eX > et] ≤ E[eX ]/et,

where the last step follows from the Markov inequality.

(c) Since X ∈ [0, 1], for any t > 0,

EX = E[X1{X > t}] + E[X1{X ≤ t}] ≤ E[1 · 1{X > t}] + E[t · 1{X ≤ t}] ≤ P[X > t] + t.

(d) Let B = ∪iAi. From the Cauchy-Schwarz inequality,(
E
[
1B

n∑
i=1

1Ai

])2

≤ E
[
12B
]
E

[( n∑
i=1

1Ai

)2]
. (1)

From the hint,

LHS of (1) =

(
E
[ n∑

i=1

1Ai

])2

=
n∑

i=1

n∑
j=1

P[Ai]P[Aj ].

Moreover,

RHS of (1) = P[B]E
[ n∑

i=1

n∑
j=1

1Ai1Aj

]
= P[∪iAi]

n∑
i=1

n∑
j=1

P[Ai ∩Aj ].

The claim follows from the fact that
∑n

i=1

∑n
j=1 P[Ai ∩Aj ] ≥ max1≤i≤n P[Ai] > 0.

3 Lower bounds for lower tails

(a) For any r ∈ [0, 1],

E[X] = E[X1{X ≥ rEX}] + E[X1{X < rEX}] ≤
√
E[X2]P[X ≥ rEX] + rE[X],

where the second step is due to the Cauchy-Schwarz inequality. Since 0 < EX <∞, we have

P[X ≥ EX] ≥ (1− r)2(EX)2/E[X2].

(b) Let Mi , |Xi|, i = 1, . . . , n, and let S1, . . . , Sn be independent Rademacher random variables
that are independent of Xi’s. Since X1, . . . , Xn are independent symmetric random variables,
from Problem 1(b), we know that (X1, . . . , Xn) and (S1M1, . . . , SnMn) have the same joint
distribution. We thus only need to show the inequality with Xi replaced with SiMi, i = 1, . . . , n.

From the law of total probability, it suffices to show that

P
[( n∑

i=1

SiMi

)2
≥ r

n∑
i=1

(SiMi)
2
∣∣∣M1 = m1, . . . ,Mn = mn

]
≥ (1− r)2

3
, ∀m1, . . . ,mn. (2)
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Since Si’s and Mi’s are independent,

LHS of (2) = P
[( n∑

i=1

Simi

)2
≥ r

n∑
i=1

m2
i

]
= P

[( n∑
i=1

Simi

)2
≥ rE

[( n∑
i=1

Simi

)2]]
= P

[
Z2 ≥ rE[Z2]

]
≥ (1− r)2 (EZ2)2

E[Z4]
≥ (1− r)2

3
,

where we have defined Z ,
∑n

i=1 Simi, and used the results of Problem 3(a) and Problem 1(a).

4 The importance of lowered expectations

(a) First, we show that Xn
p.−→ X =⇒ limn→∞ E[|Xn −X| ∧ 1] = 0.

If Xn
p.−→ X, then Xn −X

d.−→ 0. Since |Xn −X| ∧ 1 is a continuous and bounded function of
Xn−X, from the property of convergence in distribution, we have limn→∞ E[|Xn−X|∧1] = 0.

(b) Second, we show that limn→∞ E[|Xn −X| ∧ 1] = 0 =⇒ Xn
p.−→ X.

For any ε > 0, we have

E[|Xn −X| ∧ 1] ≥ E[(|Xn −X| ∧ 1)1{|Xn −X| ≥ ε}] ≥ (ε ∧ 1)P[|Xn −X| ≥ ε] ≥ 0.

Therefore, if limn→∞ E[|Xn−X|∧1] = 0, then limn→∞ P[|Xn−X| ≥ ε] = 0 for all ε > 0, which

implies that Xn
p.−→ X.

5 Probably but not surely

The following partial converse of the Borel-Cantelli Lemma is essential to prove this result.

Lemma 1. For independent events A1, A2, . . ., if
∑∞

n=1 P[An] =∞, then P[An i.o.] = 1.

From the definition of almost sure convergence, to prove the existence of c1, c2, . . . such that the
sequence cnXn does not converge to 0 almost surely, it suffices to show that

Proposition 2. For some ε0 > 0, there exist c1 ≥ c2 ≥ . . . > 0, where limn→∞ cn = 0, such that

P[|cnXn| ≥ ε0 i.o.] = 1.

To prove that for the above choice of c1, c2, . . ., the sequence cnXn converges to 0 in probability,
it suffices to show that

Proposition 3. If limn→∞ cn = 0, then for all ε > 0,

lim
n→∞

P[|cnXn| > ε] = 0.

We start with Proposition 3, which is easier to prove.

Proof of Proposition 3. For any ε > 0, we have

lim
n→∞

P[|cnXn| > ε] = lim
n→∞

P[|Xn| > ε/|cn|] = 0,

where the first equality is due to the fact that P[|cnXn| > ε] = P[|Xn| > ε/|cn|], and the second
equality follows from the fact that ε/|cn| → ∞ as cn → 0 and the property of the cumulative
distribution function.
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Now we prove Proposition 2.

Proof of Proposition 2. Let X be an i.i.d. copy of X1, X2, . . .. Fix some ε0 > 0, and let

cn , inf{c > 0 : P[c|X| ≥ ε0] ≥ 1/n}.

Let g(c) , P[c|X| ≥ ε0]. It can be checked that c 7→ g(c) is non-decreasing and right-continuous.
Therefore, cn ∈ {c > 0 : P[c|X| ≥ ε0] ≥ 1/n}, namely,

cn = min
c
{c > 0 : P[c|X| ≥ ε0] ≥ 1/n}. (3)

It follows that

c1 ≥ c2 ≥ . . . > 0. (4)

We then prove limn→∞ cn = 0 by contradiction. Suppose that for some δ > 0, cn > δ for all n.
Then by (3), P[δ|X| ≥ ε0] < 1/n for all n. This implies that P[|X| ≥ ε0/δ] = 0, which contradicts
the assumption that P[|X| ≥ t] ≥ P[|X| > t] > 0 for all t > 0. Together with (4), this proves that
limn→∞ cn = 0.

Finally, we use Lemma 1 to complete the proof. Let An , {cn|Xn| ≥ ε0}. Then by (3),

∞∑
n

P[An] ≥
∞∑
n

1/n =∞.

Since X1, X2, . . . are i.i.d., the events A1, A2, . . . are independent. Thus by Lemma 1,

P[|cnXn| ≥ ε0 i.o.] = 1,

which proves Proposition 2.
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