Homework 2: Solutions

October 8, 2015

1 The joys of symmetry

(a) We prove the following proposition. The claim that Z is symmetric then follows by induction.

Proposition 1. IfY is a symmetric random variable and X is a Rademacher random variable
independent of Y, then for any real constant r, the random variable Y + rX is symmetric.

Proof. Let Z2Y 4+ rX. For any z € R,
1 1
P[ZSZ]=§IP[Y+T’§Z]+§]P’[Y—T§Z]
1 1
:iP[—Ygz—r]+§P[—Y§z+r} =P[-Z < 7],

where the second step is due to the symmetry of Y. This proves that Y +rX is symmetric. [

Now we prove that E[Z4] < 3(E[Z?])2. We have

n n

E[Z2] = E[er] +E[2izrirjxixj} =3 2

i=1 i=1 j>i i=1
Furthermore,
E[Z1] = E[( rf) } + IE[4(Z rf) (Z Z’rﬁinXj)} +E [4(2 Zrirjxixj) }
i=1 i=1 i=1 j>i i=1 j>i
n 2 n n 2 n n
= (Do) Horad Y < (Do) +2( Do) (Dor2) = sEIZY.
i=1 i=1 j>i i=1 i=1 j=1

(b) For any ¢t > 0,

PISIX| < ] = ZBIX| < 1]+ sPI|X| <1] = JB[X| <f]+ 7 = L (BX <] ~B[X < ~f]) +

—_

_ %P[X <t + - (P[X > —] = P[X < {].

\V)

For any ¢ < 0,
1 1 1 1
PISIX| < ] = SP{IX] < f] + 5P |X| < ] = SPX| > 1] = J(B[X > ~] + P[X < ]) =P[X <.

Thus we have shown that for all ¢t € R, P[S|X| < t] =P[X <{].



2 Indicator functions for fun and profit
(a) Since X is nonnegative, for any ¢ > 0,
EX At] =E[(X At)1{X > t}] + E[(X At)1{X < t}] > {P[X > t] +0.
It follows that P[X > ¢] < E[X At]/t for any ¢ > 0.

(b) We have
P[X > t] = Ple® > €] < E[eX]/e,

where the last step follows from the Markov inequality.
(c) Since X € [0,1], for any ¢ > 0,

EX = E[X1{X > t}] + E[X1{X < t}] <E[1-1{X > t}] + E[t - 1{X < t}] <P[X > ] + t.

(d) Let B = U;A;. From the Cauchy-Schwarz inequality,

(E[lgglAiD2§E[12B]E[(Zn:lAif]. (1)

From the hint,

Moreover,

RHS of (1) = P[B|E [ f: zn: 1Ai1A].] = P[U; Ay f: Enj P[A; N Aj].

i=1 j=1 i=1 j=1

The claim follows from the fact that >, >°% | P[A; N Aj] > maxi<i<n P[A4i] > 0.

3 Lower bounds for lower tails

(a) For any r € [0, 1],

E[X] =E[X1{X > rEX}] + E[X1{X < rEX}] < VE[X2|P[X > rEX] + rE[X],
where the second step is due to the Cauchy-Schwarz inequality. Since 0 < EX < oo, we have

P[X > EX] > (1 —r)*(EX)?/E[X?.

(b) Let M; £ |X;|,i=1,...,n, and let Si,...,S, be independent Rademacher random variables
that are independent of X;’s. Since X1,..., X, are independent symmetric random variables,
from Problem 1(b), we know that (Xi,...,X,) and (S1Mi,...,S,M,) have the same joint
distribution. We thus only need to show the inequality with X; replaced with S;M;, i =1,... n.

From the law of total probability, it suffices to show that

(3 )" = S = it = ] = C57E

=1

Vmi,...,mp.  (2)



Since S;’s and M;’s are independent,

LES of (2) :P[(gsmiy Zémg} =P[( S sim)” 2 rm[( 3 sim) ]

s
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2 (EZ2)?
E[Z1] 3

= P[22 > rE[Z%)] > (1 —71)

where we have defined Z = Y7 | S;m;, and used the results of Problem 3(a) and Problem 1(a).

4 The importance of lowered expectations

(a) First, we show that X,, 3 X = lim, 00 E[|X,, — X| A 1] = 0.

If X,, & X, then X,, — X %y 0. Since | X, — X| A1is a continuous and bounded function of
Xy, — X, from the property of convergence in distribution, we have lim,,_,, E[| X, — X|A1] = 0.

(b) Second, we show that lim, . E[| X, — X|A1] =0 = X, & X.
For any € > 0, we have
E[|X, — X|A1] > E[(| X, — X|AD){| X, — X|>e}] > (AP X, — X| >¢] >0.

Therefore, if lim,, o E[|X;, — X|A1] = 0, then lim,,_,o P[| X, — X| > €] = 0 for all ¢ > 0, which
implies that X,, £ X.

5 Probably but not surely

The following partial converse of the Borel-Cantelli Lemma is essential to prove this result.
Lemma 1. For independent events Ay, Aa, ..., if Y oo P[An] = 00, then P[A, i.0.] = 1.

From the definition of almost sure convergence, to prove the existence of ¢y, co, . .. such that the
sequence ¢, X, does not converge to 0 almost surely, it suffices to show that

Proposition 2. For some €y > 0, there exist c1 > co > ... > 0, where lim,,_,o ¢, = 0, such that
Pllen Xn| > €0 d.0.] = 1.

To prove that for the above choice of ¢y, co, . . ., the sequence ¢, X,, converges to 0 in probability,
it suffices to show that

Proposition 3. Iflim, ., ¢, =0, then for all ¢ > 0,
nli_}ngop[|chn| >el=0.
We start with Proposition 3, which is easier to prove.
Proof of Proposition 3. For any € > 0, we have

lim Plle, Xn| > ] = lim P[|Xn| > ¢/]eal] =0,

n—o0

where the first equality is due to the fact that P[|c, X, | > ¢] = P[|X,,| > ¢/|cn|], and the second
equality follows from the fact that €/|c,| — o0 as ¢, — 0 and the property of the cumulative
distribution function. O



Now we prove Proposition 2.

Proof of Proposition 2. Let X be an i.i.d. copy of X1, Xo,.... Fix some ¢y > 0, and let
cn = inf{c > 0: P[c|X| > go] > 1/n}.

Let g(c) = P[c|X| > g¢]. It can be checked that ¢ ~ g(c) is non-decreasing and right-continuous.
Therefore, ¢, € {¢ > 0: P[c|X| > €] > 1/n}, namely,

¢p = min{c > 0: Plc|X| > g9] > 1/n}. (3)
It follows that
cp>cp>...>0. (4)

We then prove lim, .o ¢, = 0 by contradiction. Suppose that for some § > 0, ¢, > J for all n.
Then by (3), P[6|X| > eo] < 1/n for all n. This implies that P[|X| > ¢¢/d] = 0, which contradicts
the assumption that P[|X| > t] > P[|X| > ¢] > 0 for all t > 0. Together with (4), this proves that
lim,, oo ¢, = 0.

Finally, we use Lemma 1 to complete the proof. Let A,, = {c,|X,| > g¢}. Then by (3),

0.@) o
> PlA] =) 1/n=cc.
n n
Since X1, Xo,... are i.i.d., the events Ay, As,... are independent. Thus by Lemma 1,
PllenXn| > €0 1.0 =1,

which proves Proposition 2. O
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