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Dimensionality reduction is a generic name for any procedure that takes a complicated object liv-
ing in a high-dimensional (or possibly even infinite-dimensional) space and approximates it in some
sense by a finite-dimensional vector. We are interested in a particular class of dimensionality reduc-
tion methods. Consider a data source that generates vectors in some Hilbert space H , which is either
infinite-dimensional or has a finite but extremely large dimension (think Rd with the usual Euclidean
norm, where d is huge). We will assume that the vectors of interest lie in the unit ball of H ,

B(H ),
{

x ∈H : ‖x‖ ≤ 1
}

,

where ‖x‖ =p〈x, x〉 is the norm on H . We wish to represent each x ∈ B(H ) by a vector ŷ ∈ Rk for some
fixed k (if H is d-dimensional, then of course we must have d À k). For instance, k may represent some
storage limitation, such as a device that can store no more than k real numbers (or, more realistically,
k double-precision floating-point numbers, which for all practical purposes can be thought of as real
numbers). The mapping x 7→ ŷ can be thought of as an encoding rule. In addition, given ŷ ∈ Rk , we
need a decoding rule that takes ŷ and outputs a vector x̂ ∈H that will serve as an approximation of x. In
general, the cascade of mappings

x
encoding−−−−−−→ ŷ

decoding−−−−−−→ x̂

will be lossy, i.e., x 6= x̂. So, the goal is to ensure that the squared norm error ‖x − x̂‖2 is as small as
possible. In this lecture, we will see how Rademacher complexity techniques can be used to characterize
the performance of a particular fairly broad class of dimensionality reduction schemes in Hilbert spaces.
Our exposition here is based on a beautiful recent paper of Maurer and Pontil [MP10].

We will consider a particular type of dimensionality reduction schemes, where the encoder is a (non-
linear) projection, whereas the decoder is a linear operator fromRk into H (the Appendix contains some
basic facts pertaining to linear operators between Hilbert spaces). To specify such a scheme, we fix a pair
(Y,T ) consisting of a closed set Y⊆Rk and a linear operator T :Rk →H . We call Y the codebook and use
the encoding rule

ŷ = argmin
y∈Y

‖x −T y‖2. (1)

Unless Y is a closed subspace of Rk , this encoding map will be nonlinear. The decoding, on the other
hand, is linear: x̂ = T ŷ . With these definitions, the reconstruction error is given by

‖x − x̂‖2 = fT (x),min
y∈Y

‖x −T y‖2.
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Now suppose that the input to our dimensionality reduction scheme is a random vector X ∈ B(H ) with
some unknown distribution P . Then we measure the performance of the coding scheme (Y,T ) by its
expected reconstruction error

L(T ), EP [ fT (X )] ≡ EP

[
min
y∈Y

‖X −T y‖2
]

(note that, even though the reconstruction error depends on the codebook Y, we do not explicitly indi-
cate this dependence, since the choice of Y will be fixed by a particular application). Now let T be some
fixed class of admissible linear decoding maps T : Rk → H . So, if we knew P , we could find the best
decoder T̃ ∈T that achieves

L∗(T ), inf
T∈T

L(T )

(assuming, of course, that the infimum exists and is achieved by at least one T ∈T ).
By now, you know the drill: We don’t know P , but we have access to a large set of samples X1, . . . , Xn

drawn i.i.d. from P . So we attempt to learn T̃ via ERM:

T̂n , argmin
T∈T

1

n

n∑
i=1

fT (Xi )

= argmin
T∈T

1

n

n∑
i=1

min
y∈Y

‖Xi −T y‖2.

Our goal is to establish the following result:

Theorem 1. Assume that Y is a closed subset of the unit ball B k
2 = {

y ∈Rk : ‖y‖2 ≤ 1
}
, and that every T ∈T

satisfies

‖Te j‖ ≤α, 1 ≤ j ≤ k

‖T ‖Y , sup
y∈Y, y 6=0

‖T y‖ ≤α

for some finite α≥ 1, where e1, . . . ,ek is the standard basis of Rk . Then

L(T̂n) ≤ L∗(T )+ 60α2k2

p
n

+4α2

√
2log(1/δ)

n
(2)

with probability at lest 1−δ. In the special case when Y= {e1, . . . ,ek }, the standard basis in Rk , the event

L(T̂n) ≤ L∗(T )+ 40α2kp
n

+4α2

√
2log(1/δ)

n
(3)

holds with probability at least 1−δ.

Remark 1. The above result is slightly weaker than the one from [MP10]; as a consequence, the constants
in Eqs. (2) and (3) are slightly worse than they could otherwise be.

1 Examples

Before we get down to business and prove the theorem, let’s look at a few examples.
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1.1 Principal component analysis (PCA)

The objective of PCA is, given k, construct a projectionΠ onto a k-dimensional closed subspace of H to
maximize the average “energy content” of the projected vector:

maximize E‖ΠX ‖2

subject to dimΠ(H ) = k (4)

Π2 =Π
For any x ∈H ,

‖Πx‖2 = ‖x‖2 −‖(I −Π)x‖2, (5)

where I is the identity operator on H . To prove (5), expand the right-hand side:

‖x‖2 −‖(I −Π)x‖2 = ‖x‖2 −‖x −Πx‖2

= 2〈x,Πx〉−‖Πx‖2

= ‖Πx‖2,

where the last step is by the properties of projections. Thus,

‖Πx‖2 = ‖x‖2 −‖x −Πx‖2

= ‖x‖2 − min
x ′∈K

‖x −x ′‖2, (6)

where K is the range ofΠ (the closure of the linear span of all vectors of the formΠx, x ∈H ). Moreover,
any projection operator Π : H → K with dim(H ) = k can be factored as T T ∗, where T : Rk → H is an
isometry (see Appendix for definitions and the proof of this fact). Using this fact, we can write

K =Π(H ) =
{

T y : y ∈Rk
}

.

Using this in (6), we get

‖Πx‖2 = ‖x‖2 −min
y∈Rk

‖x −T y‖2.

Hence, solving the optimization problem (4) is equivalent to finding the best linear decoding map T̃ for
the pair (Y,T ), where Y=Rk and T is the collection of all isometries T :Rk →H . Moreover, if we recall
our assumption that X ∈ B(H ) with probability one, then we see that there is no loss of generality if we
take

Y= B k
2 ,

{
y ∈Rk : ‖y‖2 ≤ 1

}
,

i.e., the unit ball in (Rk ,‖ · ‖2). This follows from the fact that ‖Πx‖ ≤ ‖x‖ for any projection Π, so, in
particular, forΠ= T T ∗ the encoding ŷ in (1) can be written as ŷ = T ∗x, and

‖ŷ‖2 = ‖T ŷ‖ = ‖T T ∗x‖ = ‖Πx‖ ≤ ‖x‖ ≤ 1.

Thus, Theorem 1 applies withα= 1. That said, there are much tighter bounds for PCA that rely on deeper
structural results pertaining to finite-dimensional subspaces of Hilbert spaces, but that is beside the
point. The key idea here is that we can already get nice bounds using the tools already at our fingertips.
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1.2 Vector quantization or k-means clustering

Vector quantization (or k-means clustering) is a procedure that takes a vector x ∈ H and maps it to its
nearest neighbor in a finite set C = {ξ1, . . . ,ξk } ⊂H , where k is a given positive integer:

x̂ = argmin
ξ∈C

‖x −ξ‖2.

If X is random with distribution P , then the optimal k-point quantizer is given a size-k set C̃ = {ξ̃1, . . . , ξ̃k }
that minimizes the reconstruction error

EP

[
min
ξ∈C

‖X −ξ‖2
]

over all C ⊂ H with |C | = k. We can cast the problem of finding C̃ in our framework by taking Y =
{e1, . . . ,ek } (the standard basis in Rk ) and letting T be the set of all linear operators T :Rk →H . It is easy
to see that any C ⊂ H with |C | = k can be obtained as an image of the standard basis {e1, . . . ,ek } under
some linear operator T : Rk → H . Indeed, for any C = {ξ1, . . . ,ξk }, we can just define a linear operator
T :Rk →H by

Te j , ξ j , 1 ≤ j ≤ k

and then extending it to all of Rk by linearity:

T

(
k∑

j=1
y j e j

)
=

k∑
j=1

y j Te j =
k∑

j=1
y jξ j .

So, another way to interpret the objective of vector quantization is as follows: given a distribution P
supported on B(H ), we seek a k-element set C = {ξ1, . . . ,ξk } ⊂ H , such that the random vector X ∼ P
can be well-approximated on average by linear combinations of the form

k∑
j=1

y jξ j ,

where the vector of coefficients y = (y1, . . . , yk ) can have only one nonzero component, which is further-
more required to be equal to 1. In fact, there is no loss of generality in assuming that C ⊂ B(H ) as
well. This is a consequence of the fact that, for any x ∈ B(H ) and any x ′ ∈ H , we can always find some
x ′′ ∈ B(H ) such that

‖x −x ′′‖ ≤ ‖x −x ′‖.

Indeed, it suffices to take x ′′ = argminz∈B(H ) ‖x ′− z‖2, and it is not hard to show that x ′′ = x ′/‖x ′‖.
Thus, Theorem 1 applies with α = 1. Moreover, the excess risk grows linearly with dimension k,

cf. Eq. (3). It is not known whether this linear dependence on k is optimal — there are Ω(
p

k/n) lower
bounds for vector quantization, but it is still an open question whether these lower bounds are tight
[MP10].
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1.3 Nonnegative matrix factorization

Consider approximating the random vector X ∼ P , where P is supported on the unit ball B(H ), by linear
combinations of the form

k∑
j=1

y jξ j ,

where the real vector y = (y1, . . . , yk ) is constrained to lie in the nonnegative orthant

Rk
+ ,

{
y = (y1, . . . , yk ) ∈Rk : y j ≥ 0,1 ≤ j ≤ k

}
,

while the unit vectors ξ1, . . . ,ξk ∈ B(H ) are constrained by the positivity condition

〈ξ j ,ξ`〉H ≥ 0, 1 ≤ j ,`≤ k.

This is a generalization of the nonnegative matrix factorization (NMF) problem, originally posed by Lee
and Seung [LS99].

To cast NMF in our framework, let Y = Rk+, and let T be the set of all linear operators T : Rk → H

such that (i) ‖Te j‖ = 1 for all 1 ≤ j ≤ k and (ii) 〈Te j ,Te`〉 ≥ 0 for all 1 ≤ j ,` ≤ k. Then the choice of T is
equivalent to the choice of ξ1, . . . ,ξk ∈ B(H ), as above. Moreover, it can be shown that, for any x ∈ B(H )
and any T ∈T , the minimum of ‖x−T y‖2 over all y ∈Rk+ is achieved at some ŷ ∈Rk+ with ‖ŷ‖2 ≤ 1. Thus,
there is no loss of generality if we take Y=Rk+∩B k

2 . In this case, the conditions of Theorem 1 are satisfied
with α= 1.

1.4 Sparse coding

Take Y to be the `1 unit ball

B k
1 ,

{
y = (y1, . . . , yk ) ∈Rk : ‖y‖1 =

k∑
j=1

|y j | ≤ 1

}
,

and let T be the collection of all linear operators T :Rk →H with ‖Te j‖ ≤ 1 for all 1 ≤ j ≤ k. In this case,
the dimensionality reduction problem is to approximate a random X ∈ B(H ) by a linear combination of
the form

k∑
j=1

y jξ j ,

where y = (y1, . . . , yk ) ∈ Rk satisfies the constraint ‖y‖1 ≤ 1, while the vectors ξ1, . . . ,ξk belong to the unit
ball B(H ). Then for any y =∑k

j=1 y j e j ∈Y we have

∥∥T y
∥∥=

∥∥∥∥∥ k∑
j=1

y j Te j

∥∥∥∥∥
≤

k∑
j=1

|y j |‖Te j‖

≤ ‖y‖1 · max
1≤ j≤k

‖Te j‖

≤ 1,

where the third line is by Hölder’s inequality. Then the conditions of Theorem 1 are satisfied with α= 1.
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2 Proof of Theorem 1

Now we turn to the proof of Theorem 1. The format of the proof is the familiar one: if we consider the
empirical reconstruction error

Ln(T ),
1

n

n∑
i=1

fT (Xi )

= 1

n

n∑
i=1

min
y∈Y

‖Xi −T y‖2

for every T ∈T and define the uniform deviation

∆n(X n), sup
T∈T

|Ln(T )−L(T )| , (7)

then

L(T̂n) ≤ L∗(T )+2∆n(X n).

Now, for any x ∈ B(H ), any y ∈Y, and any T ∈T , we have

0 ≤ ‖x −T y‖2 ≤ 2‖x‖2 +2‖T y‖2 ≤ 4α2.

Thus, the uniform deviation ∆n(X n) has bounded differences with c1 = . . . = cn = 4α2/n, so by McDi-
armid’s inequality,

L(T̂n) ≤ L∗(T )+2E∆n(X n)+4α2

√
2log(1/δ)

n
, (8)

with probability at least 1−δ. By the usual symmetrization argument, we obtain the bound E∆n(X n) ≤
2ERn(F (X n)), where F is the class of functions fT for all T ∈T . Now, the whole affair hinges on getting
a good upper bound on the Rademacher averages Rn(F (X n)). We will do this in several steps, and we
need to introduce some additional machinery along the way.

2.1 Gaussian averages

Let γ1, . . . ,γn be i.i.d. standard normal random variables. In analogy to the Rademacher average of a
bounded set A ⊂Rn , we can define the Gaussian average of A [BM02] as

Gn(A ), Eγn sup
a∈A

∣∣∣∣∣ 1

n

n∑
i=1

γi ai

∣∣∣∣∣ .

Lemma 1 (Gaussian averages vs. Rademacher averages).

Rn(A ) ≤
√
π

2
Gn(A ). (9)
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Proof. Let σn = (σ1, . . . ,σn) be an n-tuple of i.i.d. Rademacher random variables independent of γn .
Since each γi is a symmetric random variable, it has the same distribution as σi |γi |. Therefore,

Gn(A ) = 1

n
Eγn sup

a∈A

∣∣∣∣∣ n∑
i=1

γi ai

∣∣∣∣∣
= 1

n
EσnEγn sup

a∈A

∣∣∣∣∣ n∑
i=1

σi |γi |ai

∣∣∣∣∣
≥ 1

n
Eσn sup

a∈A

∣∣∣∣∣ n∑
i=1

σi aiEγi |γi |
∣∣∣∣∣

= E|γ1| · 1

n
Eσn sup

a∈A

∣∣∣∣∣ n∑
i=1

σi ai

∣∣∣∣∣
= E|γ1|Rn(A ),

where the second step is by convexity, while in the last step we have used the fact that γ1, . . . ,γn are i.i.d.
random variables. Now, if γ is a standard normal random variable, then

E|γ| = 1p
2π

∫ ∞

−∞
|t |e−t 2/2dt

= 1p
2π

∫ ∞

0
te−t 2/2d t − 1p

2π

∫ 0

−∞
te−t 2/2dt

=
√

2

π

∫ ∞

0
te−t 2/2dt

=
√

2

π
.

Rearranging, we get (9).

Gaussian averages are often easier to work with than Rademacher averages. The reason for this is
that, for any n real constants a1, . . . , an , the sum Wa , a1γ1 + . . .+ anγn is a Gaussian random variable
with mean 0 and variance a2

1+ . . .+a2
n . Moreover, for any finite collection of vectors a(1), . . . , a(m) ∈A , the

random variables Wa(1) , . . . ,Wa(m) are jointly Gaussian. Thus, the collection of random variables (Wa)a∈A

is a zero-mean Gaussian process, where we say that a collection of real-valued random variables (Wa)a∈A

is a Gaussian process if all finite linear combinations of the Wa ’s are Gaussian random variables. In
particular, we can compute covariances: for any a, a′ ∈A ,

E[WaWa′ ] = E
[

n∑
i=1

n∑
j=1

γiγ j ai a′
j

]

=
n∑

i=1

n∑
j=1

E[γiγ j ]ai a′
j

=
n∑

i=1
ai a′

i

= 〈a, a′〉
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and things like

E[(Wa −Wa′)2] = E
[

n∑
i=1

n∑
j=1

γiγ j (ai −a′
i )(a j −a′

j )

]

=
n∑

i=1

n∑
j=1

E
[
γiγ j

]
(ai −a′

i )(a j −a′
j )

=
n∑

i=1
(ai −a′

i )2

= ‖a −a′‖2.

The latter quantities are handy because of a very useful result called Slepian’s lemma [Sle62, LT91]:

Lemma 2. Let (Wa)a∈A and (Va)a∈A be two zero-mean Gaussian processes with some index set A (not
necessarily a subset of Rn), such that

E[(Wa −Wa′)2] ≤ E[(Va −Va′)2], ∀a, a′ ∈A . (10)

Then

E sup
a∈A

Wa ≤ E sup
a∈A

Va . (11)

Remark 2. The Gaussian processes (Wa), (Va) that appear in Slepian’s lemma are not necessarily of the
form Wa = 〈a,γn〉 with γn = (γ1, . . . ,γn) a vector of independent Gaussians. They can be arbitrarily col-
lections of random variables indexed by the elements of A , such that any finite linear combination of
Wa ’s or of Va ’s is Gaussian.

Slepian’s lemma is typically used to obtain upper bounds on the expected supremum of one Gaussian
process in terms of another, which is hopefully easier to handle. The only wrinkle is that we can’t apply
Slepian’s lemma to the problem of estimating the Gaussian average Gn(A ) because of the absolute value.
However, if all a ∈A are uniformly bounded in norm, the absolute value makes little difference:

Lemma 3. Let A ⊂ Rn be a set of vectors uniformly bounded in norm, i.e., there exists some L <∞ such
that ‖a‖ ≤ L for all a ∈A . Let

G̃n(A ),
1

n
E

[
sup
a∈A

n∑
i=1

γi ai

]
. (12)

Then

G̃n(A ) ≤Gn(A ) ≤ 2G̃n(A )+
√

2

π

L

n
. (13)

Proof. The first inequality in (13) is obvious. For the second inequality, pick an arbitrary a′ ∈ A , let
Wa =∑n

i=1γi ai for any a ∈A , and write

Gn(A ) = 1

n
E

[
sup
a∈A

|Wa |
]

≤ 1

n
E

[
sup
a∈A

|Wa −Wa′ |
]
+ 1

n
E|Wa′ |.
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Since a′ was arbitrary, this gives

Gn(A ) ≤ sup
a′∈A

{
1

n
E

[
sup
a∈A

|Wa −Wa′ |
]
+ 1

n
E|Wa′ |.

}

≤ 1

n
E

[
sup

a,a′∈A
|Wa −Wa′ |

]
+ 1

n
sup
a′∈A

E|Wa′ |. (14)

For any two a, a′, the random variable Wa −Wa′ is symmetric, so

E

[
sup

a,a′∈A
|Wa −Wa′ |

]
= 2E

[
sup
a∈A

Wa

]
.

Moreover, for any a′ ∈A , Wa′ is Gaussian with zero mean and variance ‖a′‖2 ≤ L2. Thus,

sup
a′∈A

E|Wa′ | ≤ LE|γ| =
√

2

π
L.

Using the two above formulas in (14), we get the second inequality in (13), and the lemma is proved.

Armed with this lemma, we can work with the quantity G̃n(A ) instead of the Gaussian average
Gn(A ). The advantage is that now we can rely on tools like Slepian’s lemma.

2.2 Bounding the Rademacher average

Now everything hinges on bounding the Gaussian average Gn(F (xn)) for a fixed sample xn = (x1, . . . , xn),
which in turn will give us a bound on the Rademacher average Rn(F (xn)), by Lemmas 1 and 3. Let
(γi )1≤i≤n , (γi j )1≤i≤n,1≤ j≤k , and (γi j`)1≤i≤n,1≤ j ,`≤k be mutually independent sequences of i.i.d. standard
Gaussian random variables. Define the following zero-mean Gaussian processes, indexed by T ∈T :

WT ,
n∑

i=1
γi fT (xi ),

VT ,
n∑

i=1

k∑
j=1

γi j 〈xi ,Te j 〉,

UT ,
n∑

i=1

k∑
j=1

k∑
`=1

γi j`〈Te j ,Te`〉,

ΥT ,
p

8VT +
p

2UT .

By definition,

Gn(F (xn)) = E sup
T∈T

∣∣∣∣∣ 1

n

n∑
i=1

γi fT (xi )

∣∣∣∣∣
= 1

n
E sup

T∈T
|WT |,
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and we define G̃n(F (xn)) similarly. We will use Slepian’s lemma to upper-bound G̃n(F (xn)) in terms of
expected suprema of (VT )T∈T and (UT )T∈T . To that end, we start with

E
[
(WT −WT ′)2]= n∑

i=1

(
fT (xi )− fT ′(xi )

)2

=
n∑

i=1

(
min
y∈Y

‖xi −T y‖2 −min
y∈Y

‖xi −T ′y‖2
)2

≤
n∑

i=1

(
max
y∈Y

∣∣‖xi −T y‖2 −‖xi −T ′y‖2
∣∣)2

=
n∑

i=1

(
max
y∈Y

∣∣2〈xi ,T y −T ′y〉+‖T y‖2 −‖T ′y‖2
∣∣)2

≤ 8
n∑

i=1
max
y∈Y

∣∣〈xi ,T y −T ′y〉∣∣2 +2
n∑

i=1
max
y∈Y

(‖T y‖2 −‖T ′y‖2)2
, (15)

where in the third line we have used properties of inner products, and the last line is by the inequality
(a +b)2 ≤ 2a2 +2b2. Now, for each i ,

max
y∈Y

∣∣〈xi ,T y −T ′y〉∣∣2 = max
y∈Y

∣∣∣∣∣ k∑
j=1

y j 〈xi ,Te j −T ′e j 〉
∣∣∣∣∣
2

≤ max
y∈Y

‖y‖2
2

k∑
j=1

∣∣〈xi ,Te j −T ′e j 〉
∣∣2

≤
k∑

j=1

∣∣〈xi ,Te j −T ′e j 〉
∣∣2 ,

where in the second step we have used Cauchy–Schwarz. Summing over 1 ≤ i ≤ n, we see that

n∑
i=1

max
y∈Y

∣∣〈xi ,T y −T ′y〉∣∣2 ≤
n∑

i=1

k∑
j=1

∣∣〈xi ,Te j −T ′e j 〉
∣∣2

= E[
(VT −VT ′)2] . (16)

Similarly,

max
y∈Y

(‖T y‖2 −‖T ′y‖2)2 = max
y∈Y

(
k∑

j=1

k∑
`=1

y j y`〈Te j ,Te`〉−〈T ′e j ,T ′e`〉
)2

≤ max
y∈Y

k∑
j=1

k∑
`=1

y2
j y2

` ·
k∑

j=1

k∑
`=1

(〈Te j ,Te`〉−〈T ′e j ,T ′e`〉
)2

= max
y∈Y

‖y‖4
2 ·

k∑
j=1

k∑
`=1

(〈Te j ,Te`〉−〈T ′e j ,T ′e`〉
)2

≤
k∑

j=1

k∑
`=1

(〈Te j ,Te`〉−〈T ′e j ,T ′e`〉
)2 .

Therefore,
n∑

i=1
max
y∈Y

(‖T y‖2 −‖T ′y‖2)≤ E[
(UT −UT ′)2] . (17)
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Using (16) and (17) in (15), we have

E
[
(WT −WT ′)2]≤ 8E

[
(VT −VT ′)2]+2E

[
(UT −UT ′)2]

= E[
(ΥT −ΥT ′)2] .

We can therefore apply Slepian’s lemma (Lemma 2) to (WT )T∈T and (ΥT )T∈T to write

G̃n(F (xn)) = 1

n
E sup

T∈T
WT

≤ 1

n
E sup

T∈T
ΥT

≤
p

8

n
E sup

T∈T
VT +

p
2

n
E sup

T∈T
UT . (18)

We now upper-bound the expected suprema of VT and UT . For the former,

E sup
T∈T

VT = E sup
T∈T

n∑
i=1

k∑
j=1

γi j 〈xi ,Te j 〉

= E sup
T∈T

k∑
j=1

〈
n∑

i=1
γi j xi ,Te j

〉
(linearity)

≤ E sup
T∈T

k∑
j=1

∥∥∥∥∥ n∑
i=1

γi j xi

∥∥∥∥∥‖Te j‖ (Cauchy–Schwarz)

≤ E
k∑

j=1

∥∥∥∥∥ n∑
i=1

γi j xi

∥∥∥∥∥ sup
T∈T

‖Te j‖

≤α
k∑

j=1
E

∥∥∥∥∥ n∑
i=1

γi j xi

∥∥∥∥∥ (assumption on ‖T ‖)

≤α
k∑

j=1
E

√
n∑

i=1

n∑
i ′=1

γi jγi ′ j 〈xi , x ′
i 〉 (linearity)

≤α
k∑

j=1

√
n∑

i=1

n∑
i ′=1

E
[
γi jγi ′ j

]〈xi , x ′
i 〉 (Jensen)

=α
k∑

j=1

√
n∑

i=1
‖xi‖2 (properties of i.i.d. Gaussians)

≤αk
p

n. (xi ∈ B(H ) for all i )

11



Similarly, for the latter,

E sup
T∈T

UT = E sup
T∈T

n∑
i=1

k∑
j=1

k∑
`=1

γi j`〈Te j ,Te`〉

≤
k∑

j=1

k∑
`=1

E sup
T∈T

n∑
i=1

γi j`〈Te j ,Te`〉

≤
k∑

j=1

k∑
`=1

E

∣∣∣∣∣ n∑
i=1

γi j`

∣∣∣∣∣ sup
T∈T

‖Te j‖‖Te`‖

≤α2k2

√
2n

π
.

Substituting these bounds into (18), we have

G̃n(F (xn)) ≤ 1

n

(
αk

p
8n +α2k2 2

p
np
π

)
≤ 5α2k2

p
n

.

Thus, applying Lemmas 1 and 3, we have

Rn(F (xn)) ≤
√
π

2
Gn(F (xn))

≤
√
π

2

2G̃n(F (xn))+
√

2

π

maxT∈T

√∑n
i=1 | fT (xi )|2

n


≤

√
π

2

[
10α2k2

p
n

+
√

2

π

2αp
n

]

≤ 15α2k2

p
n

Recalling (8), we see that the event (2) holds with probability at least 1−δ.
For the special case of k-means clustering, i.e., when Y = {e1, . . . ,ek }, we follow a slightly different

strategy. Define a zero-mean Gaussian process

ΞT ,
n∑

i=1

k∑
j=1

γi j‖xi −Te j‖2, T ∈T .

Then

E
[
(WT −WT ′)2]= n∑

i=1

(
min

1≤ j≤k
‖xi −Te j‖2 − min

1≤ j≤k
‖i −T ′e j‖2

)2

≤
n∑

i=1
max

1≤ j≤k

(‖xi −Te j‖2 −‖xi −T ′e j‖2)2

≤
n∑

i=1

k∑
j=1

(‖xi −Te j‖2 −‖xi −T ′e j‖2)2

= E[
(ΞT −ΞT ′)2] .

12



For the process (ΞT ), we have

E sup
T∈T

ΞT = E sup
T∈T

n∑
i=1

k∑
j=1

γi j‖xi −Te j‖2

= E sup
T∈T

n∑
i=1

k∑
j=1

γi j
{‖xi‖2 −2〈xi ,Te j 〉+‖Te j‖2}

≤
k∑

j=1
E sup

T∈T

{
2

n∑
i=1

γi j |〈xi ,Te j 〉|+
n∑

i=1
γi j‖Te j‖2

}
≤ 3kα2pn,

where the methods used to obtain this bound are similar to what we did for (VT ) and (UT ). Using Lem-
mas 1–3, we have

Rn(F (xn)) ≤
√
π

2
Gn(F (xn))

≤
√
π

2

2G̃n(F (xn))+
√

2

π

maxT∈T

√∑n
i=1 | fT (xi )|2

n


≤

√
π

2

[
6α2kp

n
+

√
2

π

2αp
n

]

≤ 10α2kp
n

.

Again, recalling (8), we see that the event (3) occurs with probability at least 1−δ. The proof of Theorem 1
is complete.

A Linear operators between Hilbert spaces

We assume, for simplicity, that all Hilbert spaces H of interest are separable. By definition, a Hilbert
space H is separable if it has a countable dense subset: there exists a countable set {h1,h2, . . .} ⊂ H ,
such that for any h ∈ H and any ε > 0 there exists some j ∈N, for which ‖h −h j‖H < ε. Any separable
Hilbert space H has a countable complete and orthonormal basis, i.e., a countable set {ϕ1,ϕ2, . . .} ⊂ H

with the following properties:

1. Orthonormality — 〈ϕi ,ϕ j 〉H = δi j ;

2. Completeness — if there exists some h ∈H which is orthogonal to allϕ j ’s, i.e., 〈h,ϕ j 〉 = 0 for all j ,
then h = 0.

As a consequence, any h ∈H can be uniquely represented as an infinite linear combination

h =
∞∑

j=1
c jϕ j , where c j = 〈h,ϕ j 〉H ,

13



where the infinite series converges in norm, i.e., for any ε> 0 there exists some n ∈N, such that∥∥∥∥∥ϕ−
n∑

j=1
c jϕ j

∥∥∥∥∥
H

< ε.

Moreover, ‖h‖2
H

=∑∞
j=1 |c j |2.

Let H and K be two Hilbert spaces. A linear operator from H into K is a mapping T : H → K ,
such that (i) T (αh+α′h′) =αT h+α′T h′ for any two h,h′ ∈H andα,α′ ∈R. A linear operator T : H →K

is bounded if

‖T ‖H →K , sup
h∈H ,h 6=0

‖T h‖K

‖h‖H
<∞.

We will denote the space of all bounded linear operators T : H → K by L (H ,K ). When H = K , we
will write L (H ) instead. For any operator T ∈L (H ,K ), we have the adjoint operator T ∗ ∈L (K ,H ),
which is characterized by

〈g ,T h〉K = 〈T ∗g ,h〉H , ∀g ∈K ,h ∈H .

If T ∈L (H ) has the property that T = T ∗, we say that T is self-adjoint.
Some examples:

• The identity operator on H , denoted by IH , maps each h ∈H to itself. IH is a self-adjoint opera-
tor with ‖IH ‖ ≡ ‖IH ‖H →H = 1. We will often omit the index H and just write I .

• A projection is an operator Π ∈ L (H ) satisfying Π2 =Π, i.e., Π(Πh) =Πh for any h ∈ H . This is a
bounded operator with ‖Π‖ = 1. Any projection is self-adjoint.

• An isometry is an operator T ∈L (H ,K ), such that ‖T h‖K = ‖h‖H for all h ∈H , i.e., T preserves
norms. If T is an isometry, then T ∗T = IH , while T T ∗ ∈L (K ) is a projection. This is easy to see:

(T T ∗)(T T ∗) = T (T ∗T )T ∗ = T T ∗.

If T ∈L (H ) and T ∗ ∈L (H ) are both isometries, then T is called a unitary operator.

• If Π ∈ L (H ) is a projection whose range K ⊆ H is a closed k-dimensional subspace, then there
exists an isometry T ∈ L (Rk ,K ), such that Π = T T ∗. Here, Rk is a Hilbert space with the usual
‖ · ‖2 norm. To see this, let {ψ1, . . . ,ψk } ⊂ H be an orthonormal basis of K , and complete it to a
countable basis {ψ1,ψ2, . . . ,ψk ,ψk+1,ψk+2, . . .} for the entire H . Here, the elements of {ψ j }∞j=k+1

are mutually orthonormal and orthogonal to {ψ j }k
j=1. Any h ∈H has a unique representation

h =
∞∑

j=1
α jψ j

for some real coefficients α1,α2, . . .. With this, we can write out the action ofΠ explicitly as

Πh =
k∑

j=1
α jψ j .
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Now consider the map T :Rk →K that takes

α= (α1, . . . ,αk ) ∈Rk 7−→
k∑

j=1
α jψ j .

It is easy to see that T is an isometry. Indeed,

‖Tα‖H =
∥∥∥∥∥ k∑

j=1
α jψ j

∥∥∥∥∥
H

=
√√√√ k∑

j=1
α2

j = ‖α‖2.

The adjoint of T is easily computed: for any α= (α1, . . . ,αk ) ∈Rk and any h′ =∑∞
j=1α

′
jψ j ∈H ,

〈h′,Tα〉H = 〈Πh′,Tα〉H

=
〈

k∑
j=1

α′
jψ j ,

k∑
j=1

α jψ j

〉

=
k∑

j=1
α′

jα j

= 〈T ∗h′,α〉.
Since this must hold for arbitrary α ∈ Rk and h′ ∈ H ′, we must have T ∗h′ = T ∗

(∑∞
j=1α

′
jψ j

)
=

(α′
1, . . . ,α′

j ). Now let’s compute T ∗h for any h =∑
j α jψ j :

T T ∗h = T (T ∗h)

= T

(
T ∗

( ∞∑
j=1

α jψ j

))
= T ((α1, . . . ,αk ))

=
k∑

j=1
α jψ j

=Πh.
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