
Formulation of the learning problem

Maxim Raginsky

September 4, 2013

Now that we have seen an informal statement of the learning problem, as well as acquired
some technical tools in the form of concentration inequalities, we can proceed to define the
learning problem formally. Recall that the basic goal is to be able to predict some random vari-
able Y of interest from a correlated random observation X , where the predictor is to be con-
structed on the basis of n i.i.d. training samples (X1,Y1), . . . , (Xn ,Yn) from the joint distribution
of (X ,Y). We will start by looking at an idealized scenario (often called the realizable case in
the literature), in which Y is a deterministic function of X , and we happen to know the function
class to which it belongs. This simple set-up will let us pose, in a clean form, the basic require-
ments a learning algorithm should satisfy. Once we are done with the realizable case, we can
move on to the general setting, in which the relationship between X and Y is probabilistic and
not known precisely. This is often referred to as the model-free or agnostic case.

This order of presentation is, essentially, historical. The first statement of the learning prob-
lem is hard to trace precisely, but the “modern” algorithmic formalization seems to originate
with the 1984 work of Valiant [Val84] on learning Boolean formulae. Valiant has focused on
computationally efficient learning algorithms. The agnostic (or model-free) formulation was
first proposed and studied by Haussler [Hau92] in 1992.

In this lecture, I will be closely following the excellent exposition of Vidyasagar [Vid03, Ch. 3].

1 The realizable case

We start with an idealized scenario, now often referred to in the literature as the realizable case.
The basic set-up is as follows. We have a set X (often called the feature space or input space)
and a family P of probability distributions on X. We obtain an i.i.d. sample X n = (X1, . . . , Xn)
drawn according to some P ∈ P , which we do not know (although it may very well be the case
that P is a singleton, |P | = 1, in which case we, of course, do know P). We will look at two basic
problems:

1. Concept learning: There is a class C of subsets of X, called the concept class, and an un-
known target concept C∗ ∈ C is picked by Nature. For each feature Xi in our sample X n ,
we receive a binary label Yi = 1{Xi∈C∗}. The n feature-label pairs form the training set

(X1,Y1) = (X1,1{X1∈C∗}), . . . , (Xn ,Yn) = (Xn ,1{Xn∈C∗}). (1)

The objective is to approximate the target concept C∗ as accurately as possible.

1

2. Function learning: There is a class F of functions f : X→ [0,1], and an unknown target
function f ∗ ∈F is picked by nature. For each input point Xi in the sample X n , we receive
a real-valued output Yi = f ∗(Xi). The n input-output pairs

(X1,Y1) = (X1, f ∗(X1)), . . . , (Xn , f ∗(Xn)). (2)

The objective is to approximate the target function f ∗ as accurately as possible. (Note: the
requirement that f map X into [0,1] is imposed primarily for technical convenience; us-
ing appropriate moment and/or tail behavior assumptions on P , it is possible to remove
this requirement, but the resulting proofs will be somewhat laborious.)

We will now consider these two problems separately.

1.1 Concept learning

As we already stated, the goal of concept learning is to approximate the target concept C∗ as
accurately as possible on the basis of the training data (1). This is done by means of a learning
algorithm. An algorithm of this sort should be capable of producing an approximation to C∗

given the training set of the form (1) of any size n. More precisely:

Definition 1. A concept learning problem is specified by a triple (X,P ,C), where X is the fea-
ture space, P is a family of probability distributions on X, and C is a concept class. A learning
algorithm for (X,P ,C) is a sequence A = {An}∞n=1 of mappings

An : (X× {0,1})n →C .

If P consists of only one distribution P , then the mappings An may depend on P ; otherwise,
they may only depend on P as a whole. The idea behind the above definition is that for each
training set size n we have a definite procedure for forming an approximation to the unknown
target concept C∗ on the basis of the training set of that size.

For brevity, let us denote by Zi the i th training pair (Xi ,Yi) = (Xi ,1{Xi∈C∗}), and let us denote
by Z the set X×{0,1}. Given a training set Z n = (Z1, . . . , Zn) ∈Zn and a learning algorithm A , the
approximation to C∗ is

Ĉn = An(Z n) = An(Z1, . . . , Zn) = An
(
(X1,1{X1∈C∗}, . . . , (Xn ,1{Xn∈C∗})

)
.

Note that Ĉn is an element of the concept class C (by definition), and that it is a random variable
since it depends on the random sample Z n . It is often referred to as a hypothesis output by the
learning algorithm A .

How shall we measure the goodness of this approximation Ĉn? A natural thing to do is the
following. Suppose now we draw a fresh feature X from the same distribution P ∈P as the one
that has generated the training feature set X n and venture a hypothesis that X belongs to the
target concept C∗ if X ∈ Ĉn , i.e., if 1{X∈Ĉn } = 1. When would we make a mistake, i.e., misclassify
X ? There are two mutually exclusive cases:

1. X is in C∗, but not in Ĉn , i.e., X ∈C∗∩Ĉ c
n , where Ĉ c

n =X\Ĉn is the complement of Ĉn in X.

2

2. X is not in C∗, but it is in Ĉn , i.e., X ∈ (C∗)c ∩ Ĉn .

Thus, we will misclassify X precisely when it happens to lie in the symmetric difference

C∗4Ĉn , (C∗∩ Ĉ c
n)∪ ((C∗)c ∩ Ĉn).

This will happen with probability P (C∗4Ĉn) — note, by the way, that this is a random number
since Ĉn depends on the training data Z n . At any rate, we take the P-probability of the symmet-
ric difference C∗4Ĉn as our measure of performance of A . In order to streamline the notation,
let us define the risk (or loss) of any C ∈C w.r.t. C∗ and P as

LP (C ,C∗), P (C4C∗) = P (X ∈C4C∗).

Exercise 1. Prove that

LP (C ,C∗) =
∫
X

∣∣1{x∈C } −1{x∈C∗}
∣∣2 P (d x).

In other words, LP (C ,C∗) is the squared L2(P) norm of the difference of the indicator functions
IC (·) = 1{·∈C } and IC∗(·) = 1{·∈C∗}, LP (C ,C∗) = ‖IC − IC∗‖2

L2(P)
.

Roughly speaking, we will say that A is a good algorithm if

LP (Ĉn ,C∗) → 0 as n →∞ (3)

for any P ∈ P and any C∗ ∈ C . Since Ĉn is a random element of C , the convergence in (3) can
only be in some probabilistic sense. In order to make things precise, let us define the following
two quantities:

r (n,ε,P), sup
C∈C

P n (
X n ∈Xn : LP (Ĉn ,C) ≥ ε)

r̄ (n,ε,P), sup
P∈P

r (n,ε,P)

where P n denotes the n-fold product of P . For a fixed P (which amounts to assuming that the
features X n were drawn i.i.d. from P), r (n,ε,P) quantifies the “size” of the set of “bad” samples,
where we say that a sample X n is bad if it causes the learning algorithm to output a hypothesis
Ĉn whose risk is larger than ε. The quantity r̄ (n,ε,P) accounts for the fact that we do not know
which P ∈P has generated the training feature points.

With all these things defined, we can now state the following:

Definition 2. A learning algorithm A = {An} is probably approximately correct (or PAC) to ac-
curary ε if

lim
n→∞ r̄ (n,ε,P) = 0. (4)

We say that A is PAC if it is PAC to accurary ε for every ε > 0. The concept class C is called PAC
learnable to accuracy ε w.r.t. P if there exists an algorithm that is PAC to accuracy ε. Finally, we
say that C is PAC learnable if there exists an algorithm that is PAC.

3

The term “probably approximately correct,” which seems to have first been introduced by
Angluin [Ang88], is motivated by the following observations. First, the hypothesis Ĉn output
by A for some n is only an approximation to the target concept C∗. Thus, LP (Ĉn ,C∗) will be,
in general, nonzero. But if it is small, then we are justified in claiming that Ĉn is approximately
correct. Secondly, we may always encounter a bad sample, so LP (Ĉn ,C∗) can be made small only
with high probability. Thus, informally speaking, a PAC algorithm is one that “works reasonably
well most of the time.”

An equivalent way of phrasing the statement that a learning algorithm is PAC is as follows:
For any ε> 0 and δ> 0, there exists some n(ε,δ) ∈N, such that

P n (
X n ∈Xn : LP (Ĉn ,C) ≥ ε)≤ δ, ∀n ≥ n(ε,δ),∀C ∈C ,∀P ∈P . (5)

In this context, ε is called the accuracy parameter, while δ is called the confidence parameter.
The meaning of this alternative characterization is as follows. If the sample size n is at least
n(ε,δ), then we can state with confidence at least 1−δ that the hypothesis Ĉn will correctly
classify a fresh random point X ∈X with probability at least 1−ε.

The two problems of interest to us are:

1. Determine conditions under which a given concept class C is PAC learnable.

2. Obtain upper and lower bounds on n(ε,δ) as a function of ε,δ. The following terminol-
ogy is often used: the smallest number n(ε,δ) such that (5) holds is called the sample
complexity.

1.2 Function learning

The goal of function learning is to construct an accurate approximation to an unknown tar-
get function f ∗ ∈ F on the basis of training data of the form (2). Analogously to the concept
learning scenario, we have:

Definition 3. A function learning problem is specified by a triple (X,P ,F), where X is the input
space, P is a family of probability distributions on X, and F is a class of functions f : X→ [0,1].
A learning algorithm for (X,P ,F) is a sequence A = {An}∞n=1 of mappings

An : (X× [0,1])n →F .

As before, let us denote by Zi the input-output pair (Xi ,Yi) = (Xi , f ∗(Xi)) and by Z the prod-
uct set X× [0,1]. Given a training set Z n = (Z1, . . . , Zn) ∈ Zn and a learning algorithm A , the
approximation to f ∗ is

f̂n = An(Z n) = An
(
(X1, f ∗(X1)), . . . , (Xn , f ∗(Xn))

)
.

As in the concept learning setting, f̂n is a random element of the function class F .
In order to measure the performance of A , we again imagine drawing a fresh input point

X ∈ X from the same distribution P ∈ P that has generated the training inputs X n . A natural

4

error metric is the squared loss | f̂n(X)− f ∗(X)|2. As before, we can define the risk (or loss) of any
f ∈F w.r.t. f ∗ and P as

LP (f , f ∗), EP | f (X)− f ∗(X)|2 = ‖ f − f ∗‖2
L2(P) =

∫
X
| f (x)− f ∗(x)|2P (d x). (6)

Thus, the quantity of interest is the risk of f̂n :

LP (f̂n , f ∗) =
∫
X
| f̂n(x)− f ∗(x)|2P (d x).

Keep in mind that LP (f̂n , f ∗) is a random variable, as it depends on f̂n , which in turn depends
on the random sample X n ∈Xn .

Remark 1. The concept learning problem is, in fact, a special case of the function learning
problem. Indeed, fix a concept class C and consider the function class F consisting of the
indicator functions of the sets in C :

F = {IC : C ∈C }.

Then for any f = IC and f ∗ = IC∗ we will have

LP (f , f ∗) = ‖IC − IC∗‖2
L2(P) = P (C4C∗),

which is the error metric we have defined for concept learning.

As before, given a function learning problem (X,P ,F) and an algorithm A , we can define

r (n,ε,P), sup
f ∈F

P n (
X n ∈Xn : LP (f̂n , f) ≥ ε)

r̄ (n,ε,P), sup
P∈P

r (n,ε,P)

for every n ∈N and ε> 0.The meaning of these quantities is exactly parallel to the corresponding
quantities in concept learning, and leads to the following definition:

Definition 4. A learning algorithm A = {An} is PAC to accuracy ε if

lim
n→∞ r̄ (n,ε,P) = 0,

and PAC if it is PAC to accuracy ε for all ε> 0. A function class F = { f :X→ [0,1]} is PAC-learnable
(to accuracy ε) w.r.t. P if there exists an algorithm A that is PAC for (X,P ,F) (to accuracy ε).

An equivalent way of stating that A is PAC is that, for any ε,δ> 0 there exists some n(ε,δ) ∈N
such that

P n (
X n ∈Xn : LP (f̂n , f) ≥ ε)≤ δ, ∀n ≥ n(ε,δ),∀ f ∈F ,∀P ∈P .

The smallest n(ε,δ) ∈N for which the above inequality holds is termed the sample complexity.

5

2 The model-free case

The realizable setting we have focused on in the preceding section rests on certain assumptions,
which are not always warranted:

• The assumption that the target concept C∗ belongs to C (or that the target function f ∗

belongs to F) means that we are trying to fit a hypothesis to data, which are a priori
known to have been generated by some member of the model class defined by C (or by
F). However, in general we may not want to (or be able to) assume much about the data
generation process, and instead would like to find the best fit to the data at hand using an
element of some model class of our choice.

• The assumption that the training features (or inputs) are labelled noiselessly by 1{x∈C∗} (or
by f (x)) rules out the possibility of noisy measurements or observations.

• Finally, even if the above assumption were true, we would not necessarily have a priori
knowledge of the concept class C (or the function class F) containing the target concept
(or function). In that case, the best we could hope for is to pick our own model class
and seek the best approximation to the unknown target concept (or function) among the
elements of that class.

The model-free learning problem (also referred to as the agnostic case), introduced by Haussler
[Hau92], takes a more general decision-theoretic approach and removes the above restrictions.
It has the following ingredients:

• Sets X, Y, and U

• A class P of probability distributions on Z,X×Y

• A class F of functions f :X→U (the hypothesis space)

• A loss function ` :Y×U→ [0,1]

The learning process takes place as follows. We obtain an i.i.d. sample Z n = (Z1, . . . , Zn), where
each Zi = (Xi ,Yi) is drawn from the same fixed but unknown P ∈ P . A learning algorithm is a
sequence A = {An}∞n=1 of mappings

An :Zn →F .

As before, let
f̂n = An(Z n) = An(Z1, . . . , Zn) = An((X1,Y1), . . . , (Xn ,Yn)).

This is the hypothesis emitted by the learning algorithm based on the training data Z n . Note
that, by definition, f̂n is a random element of the hypothesis space F , and that it maps each
point x ∈ X to a point u = f̂n(x) ∈ U. Following the same steps as in the realizable case, we
evaluate the goodness of f̂n by its expected loss

LP (f̂n), EP
[
`(Y , f̂n(X))

∣∣Z n]= ∫
X×Y

`(y, f̂n(x))P (d x,d y),

6

where the expectation is w.r.t. a random couple (X ,Y) ∈ Z drawn according to the same P but
independently of Z n . Note that LP (f̂n) is a random variable since so is f̂n . In general, we can
define the expected risk w.r.t. P for every f in our hypothesis space by

LP (f), EP [`(Y , f (X))] =
∫
X×Y

`(y, f (x))P (d x,d y)

as well as the minimum risk
L∗

P (F), inf
f ∈F

LP (f).

Conceptually, L∗
P (F) is the best possible performance of any hypothesis in F when the samples

are drawn from P ; similarly, LP (f̂n) is the actual performance of the algorithm with access to a
training sample of size n. It is clear from definitions that

0 ≤ L∗
P (F) ≤ LP (f̂n) ≤ 1.

The goal of learning is to guarantee that LP (f̂n) is as close as possible to L∗
P (F), whatever the

true P ∈ P happens to be. In order to speak about this quantitatively, we need to assess the
probability of getting a “bad” sample. To that end, we define, similarly to what we have done
earlier, the quantity

r (n,ε), sup
P∈P

P n (
Z n ∈Zn : LP (f̂n) ≥ L∗

P (F)+ε) (7)

for every ε> 0. Thus, a sample Z n ∼ P n is declared to be “bad” if it leads to a hypothesis whose
expected risk on an independent test point (X ,Y) ∼ P is greater than the smallest possible loss
L∗

P (F) by at least ε. We have the following:

Definition 5. We say that a learning algorithm for a problem (X,Y,U,P ,F ,`) is PAC to accuracy
ε if

lim
n→∞r (n,ε) = 0.

An algorithm that is PAC to accuracy ε for every ε> 0 is said to be PAC. A learning problem spec-
ified by a tuple (X,Y,U,P ,F ,`) is model-free (or agnostically) learnable (to accuracy ε) if there
exists an algorithm for it which is PAC (to accuracy ε).

Let us look at some examples.

2.1 Function learning in the realizable case

First we show that the model-free framework contains the realizable set-up as a special case.
To see this, let X be an arbitrary space and let Y = U = [0,1]. Let F be a class of functions
f :X→ [0,1]. Let PX be a family of probability distributions PX onX. To each PX and each f ∈F

associate a probability distribution P f on X×Y as follows: let X ∼ PX , and let the conditional
distribution of Y given X = x be given by

PY |X , f (B |X = x) = 1{ f (x)∈B}

7

for all (measurable) sets B ⊆Y. The resulting joint distribution PX , f is then uniquely defined by
its action on the “rectangles” A×B , A ⊆X and B ⊆Y:

PX , f (A×B),
∫

A
PY |X , f (B |x)PX (d x) =

∫
A

1{ f (x)∈B}PX (d x)

Finally, let P = {PX , f : f ∈F ,PX ∈PX}. Finally, let `(y,u), |y −u|2.
Now, fixing a probability distribution P ∈P is equivalent to fixing some PX ∈PX and some

f ∈ F . A random element of Z = X×Y drawn according to such a P has the form (X , f (X)),
where X ∼ PX . An i.i.d. sequence (X1,Y1), . . . , (Xn ,Yn) drawn according to P therefore has the
form

(X1, f (X1)), . . . , (Xn , f (Xn)),

which is precisely what we had in our discussion of function learning in the realizable case.
Next, for any P = PX , f ∈P and any other g ∈F , we have

LPX , f (g) =
∫
X×Y

|y − g (x)|2PX , f (d x,d y)

=
∫
X×Y

1{y= f (x)}|y − g (x)|2PX (d x)

=
∫
X
| f (x)− g (x)|2PX (d x)

= ‖ f − g‖2
L2(PX),

which is precisely the risk LPX (g , f) defined in (6). Moreover,

L∗
PX , f

= inf
g∈F

LPX , f (g) = inf
g∈F

‖ f − g‖2
L2(PX) ≡ 0.

Therefore,

r (n,ε) = sup
PX , f ∈P

P n
X , f

(
Z n ∈Zn : LPX , f (f̂n) ≥ L∗

PX , f
+ε

)
= sup

PX ∈PX

sup
f ∈F

P n
X

(
X n ∈Xn : LP (f̂n , f) ≥ ε)

≡ r̄ (n,ε,PX).

Thus, the function learning problem in the realizable case can be covered under the model-free
framework as well.

2.2 Learning to classify with noisy labels

Consider the concept learning problem in the realizable case, except that now the labels Yi ,
which in the original problem had the form 1{Xi∈C∗} for some target concept C∗, are noisy. That
is, if Xi is a training feature point, then the label Yi may be “flipped” due to chance, indepen-
dently of all other X j ’s, j 6= i .

8

The precise formulation of this problem is as follows. Let X be a given feature space, let C

be a concept class on it, and let PX be a class of probability distributions on X. Suppose that
Nature picks some distribution PX ∈ PX of the features and some target concept C∗ ∈ C . The
training data are generated as follows. First, an i.i.d. sample X n = (X1, . . . , Xn) is drawn according
to some PX ∈PX. Then the corresponding labels Y1, . . . ,Yn ∈ {0,1} are generated as follows:

Yi =
{

1{Xi∈C∗}, with probability 1−η
1−1{Xi∈C∗}, with probability η

independently of X n , {Y j } j 6=i

where η< 1/2 is the classification noise rate.
To cast this problem into the model-free framework, let Y = U = {0,1}, let F = {IC : C ∈ C },

and let `(y,u) = |y −u|2. Define a class P of probability distributions {PX ,C : PX ∈ PX,C ∈ C }
on X×Y = X× {0,1} as follows. Let X ∼ PX , and for a given C ∈ C consider the conditional
probability of Y = 1 given X = x. If x ∈C , then Y = 1 if and only if there was no error in the label;
on the other hand, if x 6∈C , then Y = 1 if and only if there was an error. That is,

PY |X ,C (1|X = x) = (1−η)1{x∈C } +η1{x∈C c }

= (1−η)1{x∈C } +η(1−1{x∈C });

PY |X ,C (0|X = x) = 1−PY |X ,C (1|X = x)

= η1{x∈C } + (1−η)(1−1{x∈C }).

Then for any measurable set A ⊆X we will have

PX ,C (A× {1}) =
∫

A
PY |X ,C (1|X = x)PX (d x)

=
∫

A

[
(1−η)1{x∈C } +η(1−1{x∈C })

]
PX (d x)

= (1−η)
∫

A
1{x∈C }PX (d x)+η

∫
A

PX (d x)−η
∫

A
1{x∈C }PX (d x)

= ηPX (A)+ (1−2η)PX (A∩C) (8)

and similarly

PX ,C (A× {0}) = (1−η)PX (A)− (1−2η)PX (A∩C). (9)

Given a hypothesis f = IC ′ ∈F , we have

LPX ,C (IC ′) =
∫
X×Y

|y − IC ′(x)|2PX ,C (d x,d y).

Computing this integral is straightforward but tedious. We start by expanding it as follows:∫
X×Y

|y − IC ′(x)|2PX ,C (d x,d y)

=
∫
X
|0− IC ′(x)|2PX ,C (d x × {0})+

∫
X
|1− IC ′(x)|2PX ,C (d x × {1})

=
∫
X

1{x∈C ′}PX ,C (d x × {0})+
∫
X

1{x∈(C ′)c }PX ,C (d x × {1})

= PX ,C (C ′× {0})+PX ,C ((C ′)c × {1}).

9

Substituting the expressions (8) and (9) into the above, we get

LPX ,C (IC ′) = (1−η)PX (C ′)− (1−2η)PX (C ∩C ′)+ηPX ((C ′)c)+ (1−2η)PX (C ∩ (C ′)c)

= (1−η)(PX (C ∩C ′)+PX (C c ∩C ′)︸ ︷︷ ︸
PX (C ′)

)− (1−2η)PX (C ∩C ′)

+η(PX (C ∩ (C ′)c)+PX (C c ∩ (C ′)c)︸ ︷︷ ︸
PX ((C ′)c)

)+ (1−2η)PX (C ∩ (C ′)c)

= (1−η)(PX (C ∩ (C ′)c)+PX (C c ∩C ′)︸ ︷︷ ︸
PX (C4C ′)

)+ηPX (C ∩C ′)+ηP (C c ∩ (C ′)c)︸ ︷︷ ︸
PX ((C∪C ′)c)

= (1−η)PX (C4C ′)+ηPX (C ∩C ′)+η(1−PX (C ∪C ′))

= (1−η)PX (C4C ′)+η−η(PX (C ∪C ′)−PX (C ∩C ′)︸ ︷︷ ︸
PX (C4C ′)

)

= η+ (1−2η)PX (C4C ′)
≡ η+ (1−2η)LPX (C ′,C).

From this, we have

L∗
PX ,C

(F) = inf
C ′∈C

LPX ,C (IC ′)

= η+ (1−2η) inf
C ′∈C

PX (C4C ′)

= η,

where the infimum is achieved by letting C ′ =C . From this it follows that

LPX ,C (C ′) ≥ L∗
PX ,C

+ε ⇐⇒ PX ,C (C4C ′) ≥ ε

1−2η

In other words, learning a concept to accuracy ε with noise rate η is equivalent to learning a
concept to accuracy ε/(1−2η) in the noise-free case:

r (n,ε) = r̄

(
n,

ε

1−2η
,PX

)
.

3 Empirical risk minimization

Having formulated the model-free learning problem, we must now turn to the question of how
to construct PAC learning algorithms (and the related question of when a hypothesis class is
PAC-learnable in the model-free setting).

We will first start with a heuristic argument and then make it rigorous. Suppose we are faced
with the learning problem specified by (X,Y,U,P ,F ,`). Given a training set Z n = (Z1, . . . , Zn),
where each Zi = (Xi ,Yi) is independently drawn according to some unknown P ∈ P , what

10

should we do? The first thing to note is that, for any hypothesis f ∈ F , we can approximate
its risk LP (f) by the empirical risk

1

n

n∑
i=1

`(Yi , f (Xi)), (10)

whose expectation w.r.t. the distribution of Z n is clearly equal to LP (f). In fact, since ` is
bounded between 0 and 1, Hoeffding’s inequality tells us that∣∣∣∣∣ 1

n

n∑
i=1

`(Yi , f (Xi))−LP (f)

∣∣∣∣∣< ε with probability at least 1−2e−2nε2
.

We can express these statements more succinctly if we define, for each f ∈ F , the function
` f :Z→ [0,1] by

` f (z) ≡ ` f (x, y), `(y, f (x)). (11)

Then the empirical risk (10) is just the expectation of ` f w.r.t. the empirical distribution P̂Z n :

P̂Z n (` f) = 1

n

n∑
i=1

`(Yi , f (Xi)),

and, since LP (f) = EP [`(Y , f (X))] = P (` f), we will have∣∣P̂Z n (` f)−P (` f)
∣∣< ε with probability at least 1−2e−2nε2

. (12)

Now, given the data Z n we can compute the empirical risks P̂Z n (` f) for every f in our hy-
pothesis class F . Since (12) holds for each f ∈ F individually, we may intuitively claim that
the empirical risk for each f is a sufficiently accurate estimator of the corresponding true risk
LP (f) ≡ P (` f). Thus, a reasonable learning strategy would be to find any f̂n ∈ F that would
minimize the empirical risk, i.e., take

f̂n = argmin
f ∈F

P̂Z n (` f) = argmin
f ∈F

1

n

n∑
i=1

`(Yi , f (Xi)). (13)

The reason why we would expect something like (13) to work is as follows: if a given f ∗ is a
minimizer of LP (f) = P (` f) over F ,

f ∗ = argmin
f ∈F

P (` f),

then its empirical risk, P̂Z n (f ∗), will be close to LP (f ∗) = P (` f ∗) = L∗
P (F) with high probability.

Moreover, it makes sense to expect that, in some sense, f̂n defined in (13) would be “close” to
f ∗, resulting in something like

P (f̂n) ≈ P̂Z n (f̂n) ≈ P̂Z n (f ∗) ≈ P (f ∗)

11

with high probability.
Unfortunately, this is not true in general. However, as we will now see, it is true under certain

regularity conditions on the objects P , F , and `. In order to state these regularity conditions
precisely, let us define the induced loss function class

LF ,
{
` f : f ∈F

}
.

Each ` f ∈ LF corresponds to the hypothesis f ∈ F via (11). Now, for any n ∈N and any ε > 0
let us define

q(n,ε), sup
P∈P

P n

(
Z n ∈Zn : sup

f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣≥ ε) . (14)

For a fixed P ∈ P , quantity sup f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣ is the worst-case deviation between the

empirical means P̂Z n (` f) and their expectations P (` f) over the entire hypothesis class F . Given
P , we say that an i.i.d. sample Z n ∈Zn is “bad” if there exists at least one f ∈F , for which∣∣P̂Z n (` f)−P (` f)

∣∣≥ ε.

Equivalently, a sample is bad if

sup
f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣≥ ε.

The quantity q(n,ε) then compensates for the fact that P is unknown by considering the worst
case over the entire class P . With this in mind, we make the following definition:

Definition 6. We say that the induced class LF has the uniform convergence of empirical means
(UCEM) property w.r.t. P if

lim
n→∞q(n,ε) = 0

for every ε> 0.

Theorem 1. If the induced class LF has the UCEM property, then the empirical risk minimiza-
tion (ERM) algorithm of (13) is PAC.

Proof. Fix ε,δ > 0. We will now show that we can find a sufficiently large n(ε,δ), such that
r (n,ε) < δ for all n ≥ n(ε,δ), where r (n,ε) is defined in (7).

Let f ∗ ∈F minimize the true risk w.r.t. P , i.e., P (f ∗) = L∗
P (F). For any n, we have

LP (f̂n)−L∗
P = P

(
` f̂n

)−P
(

f ∗)
= P

(
` f̂n

)− P̂Z n
(
` f̂n

)︸ ︷︷ ︸
T1

+ P̂Z n
(
` f̂n

)− P̂Z n
(
` f ∗

)︸ ︷︷ ︸
T2

+ P̂Z n
(
` f ∗

)−P
(
` f ∗

)︸ ︷︷ ︸
T3

,

12

where in the second line we have added and subtracted P̂Z n
(
` f̂n

)
and P̂Z n

(
` f ∗

)
. We will now

analyze the behavior of the three terms, T1, T2, and T3. Since f̂n minimizes the empirical risk
P̂Z n (` f) over all f ∈F , we will have

T2 = P̂Z n
(
` f̂n

)− P̂Z n
(
` f ∗

)≤ 0.

Next,
T1 = P

(
` f̂n

)− P̂Z n
(
` f̂n

)≤ sup
f ∈F

[
P̂Z n (` f)−P (` f)

]≤ sup
f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣ ,

and the same upper bound holds for T3. Hence,

LP (f̂n)−L∗
P (F) ≤ 2 sup

f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣ . (15)

Now, since LF has the UCEM property, we can find some sufficiently large n0(ε,δ), such that

q(n,ε/2) = sup
P∈P

P n

(
Z n ∈Zn : sup

f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣≥ ε/2

)
< δ, ∀n ≥ n0(ε,δ).

From this it follows that, for all n ≥ n0(ε,δ), we will have

P n

(
Z n : sup

f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣≥ ε/2

)
< δ, ∀P ∈P .

From (15), we see that

LP (f̂n) ≥ L∗
P (F)+ε =⇒ sup

f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣≥ ε/2

for all n. However, for all n ≥ n0(ε,δ) the latter event will occur with probability at most δ, no
matter which P is in effect. Therefore, for all n ≥ n0(ε,δ) we will have

r (n,ε) = sup
P∈P

P n (
Z n : LP (f̂n) ≥ L∗

P (F)+ε)
≤ sup

P∈P

P n

(
Z n : sup

f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣≥ ε/2

)
≡ q(n,ε/2)

< δ,

which is precisely what we wanted to show. Thus, r (n,ε) → 0 as n →∞ for every ε > 0, which
means that the ERM algorithm is PAC.

This theorem shows that the UCEM property of the induced class LF is a sufficient condi-
tion for the ERM algorithm to be PAC. Now the whole affair rests on us being able to establish
the UCEM property for various “interesting” and “useful” problem specifications. This will be

13

our concern in the lectures ahead. However, let me give you a hint of what to expect. In many
cases, we will be able to show that the induced class LF is so well-behaved that the bound

EP n

[
sup
f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣]≤ CF ,`p

n
(16)

holds for every P , where CF ,` > 0 is some constant that depends only on the characteristics
of the hypothesis class F and the loss function `. Since ` f is bounded between 0 and 1, the
function

g (Z n), sup
f ∈F

∣∣P̂Z n (` f)−P (` f)
∣∣

has bounded differences with constants c1 = . . . = cn = 1/n. McDiarmid’s inequality then tells
us that, for any t > 0,

P n
(
g (Z n)−Eg (Z n) ≥ t

)
≤ e−2nt 2

. (17)

Let

n0(ε,δ),max

{
4C 2

F ,`

ε2
,

2

ε2
log

(
1

δ

)}
+1. (18)

Then for any n ≥ n0(ε,δ)

P n
(
g (Z n) ≥ ε

)
= P n

(
g (Z n)−Eg (Z n) ≥ ε−Eg (Z n)

)
≤ P n

(
g (Z n)−Eg (Z n) ≥ ε− CF ,`p

n

)
because of (16)

≤ P n
(
g (Z n)−Eg (Z n) ≥ ε

2

)
because n >

4C 2
F ,`

ε2

≤ e−nε2/2 using (17) with t = ε/2

< δ because n > 2

ε2
log

(
1

δ

)
for any probability distribution P over Z= X×Y. Thus, we have derived a very important fact:
If the induced loss class LF satisfies (16), then (a) it has the UCEM property, and consequently
is model-free learnable using the ERM algorithm, and (b) the sample complexity is polynomial
in 1/ε and logarithmic in 1/δ. Our next order of business will be to derive sufficient conditions
on F and ` for something like (16) to hold.

References

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

14

[Hau92] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 95:129–161, 1992.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[Vid03] M. Vidyasagar. Learning and Generalization. Springer, 2 edition, 2003.

15

	The realizable case
	Concept learning
	Function learning

	The model-free case
	Function learning in the realizable case
	Learning to classify with noisy labels

	Empirical risk minimization

