
ECE 534 RANDOM PROCESSES FALL 2012
SOLUTIONS FOR PROBLEM SET 5

1 (4.31) Mean hitting time for a discrete-time, discrete-state Markov process

(a) The transition probability matrix P can be written as:

P =

 .6 .4 0
.8 0 .2
0 .4 .6


(b) In order to get the invariant distribution, we have to find a row matrix π such that πP = π.
Therefore:

(
π1 π2 π3

) .6 .4 0
.8 0 .2
0 .4 .6

 =
(
π1 π2 π3

)

Solving the system of equations:

π1 =
4

7

π2 =
2

7

π3 =
1

7
π =

(
4
7 ,

2
7 ,

1
7

)
(c) Suppose that we have τ = min{k ≥ 0 : Xk = 3}, and define ai = E[τ | X0 = i]. Then we have:

{
a1 = .6(1 + a1) + .4(1 + a2) + 0(1 + a3) = 1 + .6a1 + .4a2

a2 = .8(1 + a1) + .2(1 + a3) = 1 + .8a1

Solving the system we have: {
a1 = 17.5

a2 = 15
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2 (4.37) A state space reduction preserving the Markov property

(a) The transition probability diagram is as follows:

1

2

3

0.8
0.30.20.2

0.8

0.1

0.6

The invariant distribution can be computed as:

π

 0.0 0.8 0.2
0.1 0.6 0.3
0.2 0.8 0.0

 = π

Solving the system we have:
π =

(
1
9 ,

2
3 ,

2
9

)
(b) Notice that P1,2 = P3,2 = 0.8 and P1,3 = P3,1 = 0.2. If the process is in either of those two
states, it has the same probability of leaving the pair of states and the same probability of staying in
the pair of states. Therefore states 2 and 3 can be grouped together without changing the behavior
of the process.

f(s) =

{
a, s = 2

b, s ∈ {1, 3}

PY =

(
.6 .4
.8 .2

)
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3 (1) A compound process

(a) The expectation and covariance matrix of the process can be computed as follows, mainly using
the tower property:

µY (t) =E

[
Nt∑
i=1

Xi

]

=E

[
E

[
Nt∑
i=1

Xi | Nt

]]
=E [NtE [Xi]] = 0

CY (s, t) =E [(Ys − µY (s)) (Yt − µY (t))]

=E [YsYt]

=E

[(
Ns∑
i=1

Xi

)(
Nt∑
i=1

Xi

)]

=E

[(
Ns∑
i=1

Xi

)(
Ns∑
i=1

Xi +

Nt∑
i=Ns+1

Xi

)]

=E

( Ns∑
i=1

Xi

)2
+ E

[(
Ns∑
i=1

Xi

)(
Nt∑

i=Ns+1

Xi

)]

=E

 Ns∑
i=1

Ns∑
j=1

XiXj

+ E

 Ns∑
i=1

Nt∑
j=Ns+1

XiXj


=E

[
Ns∑
i=1

X2
i

]
+ 0

=E

[
E

[
Ns∑
i=1

X2
i | Ns

]]
=E [Ns] = λs

(b) Yes. It has independent increments. Basically, suppose that we have a sequence t1 < t2 <
· · · < tn < t. Then

Yt =

Nt∑
i=1

Xi = Ytn +Dt = Ytn +

{
0, If Nt = Ntn

· · ·+XNt , If Nt > Ntn

(1)

From this we have:

Yt − Ytn = Dt =

{
0, If Nt = Ntn

· · ·+XNt , If Nt > Ntn

(2)
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Which does not depend on the history of Y process, first because poisson process has independent
increaments and second because of i.i.d. property of Xns.

(c) Yes. The process is a martingale. To see why, we refer back to equation (??):

E [Yt | Yt1 , Yt2 , . . . , Ytn ] =E [Ytn +Dt | Yt1 , Yt2 , . . . , Ytn ]

=Ytn + E [Dt | Yt1 , Yt2 , . . . , Ytn ]

However, it can be easily shown that E[Dt] = 0 by tower property.

4 (2) Random walk on the N-cycle

(a) It’s very easy to see that the chain is equivalent to:

Xn = (Xn−1 + Un) mod N

(b) The chain forms a ring, so there is a path from any state to any other state. To be more
rigorous, note that for any i < j ∈ S, we have Pij ≥ Pi(i+1)P(i+1)(i+2) · · ·P(j−1)(j) = 1

2j−i > 0.

(c) Because the chain forms a ring, there are two ways for the process to return to state i: by
leaving to another state and returning back through the same state, and by traversing the entire
ring and returning through the other adjacent state. In the first case, excursion always takes an
even number of jumps (r = m jumps moving clockwise plus m jumps moving counterclockwise
which adds up to 2m total jumps). In the second, the excursion takes r = N + 2m jumps, where
m is the number of backward-forward jumps. The period is then

GCD {r ≥ 0 : prii > 0} = GCD ({r = 2m, m = 0, 1, 2, . . . } ∪ {r = N + 2m, m = 0, 1, 2, . . . })

=

{
1, N odd

2, N even

so X is periodic with period 2 if N is even and aperiodic if N is odd.

(d) For fixed i and j, prij > 0 if r is of the form

r = |i− j|+ 2m, m = 0, 1, 2, . . .
or r = N − |i− j|+ 2m, m = 0, 1, 2, . . .

Since N is odd, one of the two above expressions covers all sufficiently large even values of
r and the other covers all sufficiently large odd values of r. Therefore prij > 0 for all r ≥
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max (|i− j| , N − |i− j|)− 1. Considering all pairs (i, j), a lower bound on r is:

r ≥ max
i,j∈S

[max (|i− j| , N − |i− j|)− 1]

= N − 1

If r is at least N − 1, there will always be a path from one state to any other state. It must now be
shown that for r less than N − 1, there is always some (i, j) such that prij = 0. If r < N − 1 and r
is even, then there is no path from i = 0 to i = 1 in r steps. If r < N − 1 and r is odd, then there
is no path from i = 0 to j = 0 in r steps. Therefore, the smallest value of r such that prij > 0 for
all i, j ∈ S is r = N − 1.

5 (3) Random walk on a simple undirected gtaph

(a) First, we check to see that the vector π with πi = deg(i)/2|E| is a valid probability distribution.

We have
∑

i∈V
deg(i)
2|E| =

∑
i∈V deg(i)

2|E| = 2|E|
2|E| = 1. According to definition, it is a stationary distribution

only if it is invariant, πP = π. For each state i ∈ V ,

(πP )i =
∑
j∈V

πjpji

=
∑
j∈V

πj
1

deg(j)
I{(i,j)∈E}

=
∑
j∈V

deg(j)

2|E|
1

deg(j)
I{(i,j)∈E}

=
1

2|E|
∑
j∈V

I{(i,j)∈E}

=
deg(i)

2|E|
= πi

Therefore πP = π, so π is a stationary distribution.

(b) Each edge (il, il+1) ∈ E represents a transition of the Markov process X with state space S = V
that has positive probability. The sequence of vertices i0, i1, . . . , ik corresponds to a sequence of
states leading from i to j. Thus if there is a sequence of edges from i to j for all i, j ∈ V , then there
is a sequence of state transitions leading from state i to state j with pkij > 0 for all i, j ∈ S. If there

is no such sequence of vertices, then pkij = 0. Thus, X is irreducibleif and only if G is connected.
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