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What is a system?

Recap: a system is any physical device, process or computer algorithm
that transforms input signals into output signals.

Examples:

electronic circuits

biological systems: audiovisual system, cardiovascular system, etc.

socioeconomic systems: the stock market, social networks, etc.

signal processors in scientific or medical equipment or in
audio/video devices

We will state our definitions for continuous-time systems. They are

essentially the same for discrete-time systems.
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Causality

A system S is causal if the output at time t does not depend on the
values of the input at any time t′ > t.

Examples

1 Ideal predictor: y(t) = x(t + 1) — noncausal since the output at
time t depends on the input at future time t + 1

2 Ideal delay: y(t) = x(t − 1) — causal since the output at time t

depends only on the input at past time t − 1

3 Moving average (MA) filter: y[n] = x[n−1]+x[n]+x[n+1]
3 — not

causal, since the output at time n depends in part on the input at
future time n + 1

Most physical systems are causal. However, noncausal systems are widely
used in signal processing, for example, for smoothing of continuous-time
and discrete-time signals for noise removal or quality enhancement.
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Memory

A causal system S is memoryless if the output at time t depends only on
the input at time t. Otherwise, the system is said to have memory.

Note: depending on whom you ask, it may or may not make sense to
talk about memory for noncausal systems. To avoid confusion, in this
class we will only talk about memory for causal systems.

Examples

1 Ideal amplifier: y(t) = Kx(t), where K > 0 is the amplifier gain —
memoryless, since the output at time t depends only on the input at
time t

2 Integrator:

y(t) =

∫ t

−∞

x(τ)dτ

— has memory, since the output at time t depends on the input for
all −∞ < τ ≤ t.
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Linearity

A system S is

additive if for any two inputs x1(t) and x2(t),

S
{

x1(t) + x2(t)
}

= S
{

x1(t)
}

+ S
{

x2(t)
}

homogeneous if, for any input x(t) and any number a,

S
{

ax(t)
}

= aS
{

x(t)
}

.

A system that is both additive and homogeneous is called linear. In other
words, S is linear if, for any two inputs x1(t) and x2(t) and any two
numbers a1 and a2,

S
{

a1x1(t) + a2x2(t)
}

= a1S
{

x1(t)
}

+ a2S
{

x2(t)
}
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Linearity: Example 1

Suppose the input and the output are related by the differential equation

dy(t)

dt
= x(t).

Additive? Yes:
dy1(t)

dt
= x1(t),

dy2(t)

dt
= x2(t)

y(t) = S
{

x1(t)+x2(t)
}

⇒
dy(t)

dt
= x1(t)+x2(t) =

d
(

y1(t) + y2(t)
)

dt

Homogeneous? Yes:
dy(t)

dt
= x(t)

ya(t) = S
{

ax(t)
}

⇒
dya(t)

dt
= ax(t) = a

dy(t)

dt
=

d
(

ay(t)
)

dt

The system is linear.
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Linearity: Example 2

Now consider the following system:

y(t) = t2x(t)

Additive? Yes:

S
{

x1(t) + x2(t)
}

= t2
(

x1(t) + x2(t)
)

= t2x1(t) + t2x2(t)

= S
{

x1(t)
}

+ S
{

x2(t)
}

Homogeneous? Yes:

S
{

ax(t)
}

= t2ax(t) = at2x(t) = aS
{

x(t)
}

The system is linear.
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Linearity: Example 3

Consider the square-law device:

y(t) = x2(t)

Additive? No:

(

x1(t) + x2(t)
)2

= x2
1(t) + 2x1(t)x2(t) + x2

2(t) 6= x2
1(t) + x2

2(t)

So,

S
{

x1(t) + x2(t)
}

6= S
{

x1(t)
}

+ S
{

x2(t)
}

Homogeneous? No:

(

ax(t)
)2

= a2x2(t) 6= ax2(t) unless a = 1

The system is nonlinear.
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Linearity: Example 4

Consider the system y(t) = 3x(t) + 2

Additive? No:

S
{

x1(t) + x2(t)
}

= 3
(

x1(t) + x2(t)
)

+ 2

On the other hand,

S
{

x1(t)
}

+ S
{

x2(t)
}

= 3
(

x1(t) + 3x2

)

+ 4

S
{

x1(t) + x2(t)
}

6= S
{

x1(t)
}

+ S
{

x2(t)
}

Homogeneous? No:

S
{

ax(t)
}

= 3ax(t) + 2

On the other hand,

aS
{

x(t)
}

= 3ax(t) + 2a 6= 3ax(t) + 2 unless a = 1

This system is not linear.
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Time invariance

A system S is time-invariant if, for any input x(t) and any fixed time t1,

the output S
{

x(t − t1)
}

is equal to y(t − t1), where y(t) is the output

due to x(t), i.e., y(t) = S
{

x(t)
}

.

Systems that are not time-invariant are called time-varying.

Classic example: systems described by linear differential equations with
constant coefficients, such as

5
d2y(t)

dt2
− 3y(t) = −

dx(t)

dt
+ 2x(t).

Linear (RLC) circuits are described in this way.
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Time invariance: Example 1

Consider the system
y(t) = 3x2(t)u(t)

We have
S
{

x(t − t1)
}

= 3x2(t − t1)u(t).

On the other hand,

y(t − t1) = 3x2(t − t1)u(t − t1)

6= 3x2(t − t1)u(t) unless t1 = 0

This system is time-varying.
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Time invariance: Example 2

Consider the system

y(t) =

∫ t

0

e−2τx(τ)dτ

We have

S
{

x(t)
}

=

∫ t

0

e−2τx(τ)dτ.

Then

S
{

x(t − t1)
}

=

∫ t

0

e−2τx(τ − t1)dτ = e−2t1

∫ t−t1

−t1

e−2τx(τ)dτ

and y(t − t1) =

∫ t−t1

0

e−2τx(τ)dτ.

Since S
{

x(t − t1)
}

6= y(t − t1), this system is time-varying.
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Time invariance: Example 3

Consider the system
d2y(t)

dt2
= −3x(t)

In other words, if y(t) = S
{

x(t)
}

, then

d2y(t)

dt
= −3x(t).

Let v(t) = x(t − t1). So if z(t) = S
{

v(t)}, then

d2z(t)

dt2
= −3v(t) = −3x(t − t1) =

d2
(

y(t − t1)
)

dt2
.

This system is time-invariant.
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Linear time-invariant (LTI) systems

We will focus almost exclusively on linear time-invariant (LTI) systems.
We will prove later that any such system has a convolution

representation

y(t) =

∫

∞

−∞

h(t − τ)x(τ)dτ (continuous-time)

y[n] =

∞
∑

k=−∞

h[n − k]x[k] (discrete-time)

where h is called the impulse response of the system.

Another important property of LTI systems is their action on complex
exponentials: if S is LTI, then

S
{

ejωt
}

= c(ω)ejωt

for some complex number c(ω). So LTI systems can attenuate or amplify

various frequency components of the input.
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Nonlinear systems

An ideal amplifier

y(t) = Kx(t), K > 0

is linear.

Kx(t) y(t)

However, real amplifiers have saturation effects:

li
n
ea

r 
p
ar

t

P

-P

0 x

y

y(t) = Kx(t) in the linear range

−P ≤ x(t) ≤ P , but the output saturates

at some value ≈ ±KP for |x(t)| ≫ P .
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Nonlinear systems

The summing neuron model used in artificial neural networks and in
mathematical models of biological neural systems:

w1

wN

w2

x1(t)

x2(t)

xN(t)

y(t)

. 
. 

.

y(t) = σ

(

N
∑

n=1

wnxn(t)

)

,

where:

x1(t), . . . , xN (t) are N inputs

w1, . . . , wN are the synaptic
weights

σ(·) is a nonlinear
transformation

This is an example of a multiple-input, single-output system.
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