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Abstract— Motivated in part by the “rational inattention”
framework of information-constrained decision-making by eco-
nomic agents, we have recently introduced a general model for
average-cost optimal control of Markov processes subject to
mutual information constraints [1]. The optimal information-
constrained control problem reduces to an infinite-dimensional
convex program and admits a decomposition based on the
Bellman error, which is the object of study in approximate
dynamic programming.

In this paper, we apply our general theory to an information-
constrained variant of the scalar linear-quadratic-Gaussian
(LQG) control problem. We give an upper bound on the optimal
steady-state value of the quadratic performance objective and
present explicit constructions of controllers that achieve this
bound. We show that the obvious certainty-equivalent control
policy is suboptimal when the information constraints are
very severe, and exhibit another policy that performs better
in this low-information regime. In the two extreme cases of
no information (open-loop) and perfect information, these two
policies coincide with the optimum.

I. INTRODUCTION

The framework of “rational inattention,” introduced into
mathematical economics by Christopher Sims [2], [3], aims
to model decision-making by agents who maximize expected
utility (or minimize expected cost) given available informa-
tion (hence “rational”), but are capable of handling only a
limited amount of information (hence “inattention”). The
main idea behind rational inattention is that such agents
should design not only the policy that maps available in-
formation to actions, but also the observation channel that
provides information about the state of the system of interest
subject to the information constraint. Quantitatively, this
constraint is stated in terms of an upper bound on the mutual
information in the sense of Shannon [4] between the state of
the system and the observation available to the agent.

Following the initial publications of Sims [2], [3], re-
searchers have examined rational-inattention (or information-
constrained) variants of many standard economic decision-
making problems, both static and dynamic — see, e.g., [5]–
[10]. These works have offered compelling information-
theoretic explanations of certain empirically observed fea-
tures of economic behavior of individuals, firms or institu-
tions; however, most of them rely on heuristic considerations
or on simplifying assumptions pertaining to the structure
of observation channels. A parallel line of research on
dynamical decision-making with limited information can be
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found in the control theory literature (a very partial list of
references is [11]–[16]).

In an earlier paper [1], we have initiated the development
of a general theory for optimal control subject to mutual
information constraints. We focused on the average-cost
optimal control problem for Markov processes and showed
that the construction of an optimal information-constrained
controller reduces to a variant of the linear-programming
representation of the average-cost optimal control problem,
subject to an additional mutual information constraint on
the randomized stationary policy. The resulting optimization
problem is convex and admits a decomposition in terms of
the Bellman error, which is the object of study in approx-
imate dynamic programming [17], [18]. This decomposi-
tion reveals a fundamental connection between information-
constrained controller design and rate-distortion theory [19],
a branch of information theory that deals with optimal
compression of data subject to information constraints. (See
[1] and Section II of this paper for more details.)

In this paper, we use the theoretical methodology devel-
oped in [1] to analyze the classic linear-quadratic-Gaussian
(LQG) control problem [20], [21] in the rational inatten-
tion framework. Various information- or communication-
constrained versions of the LQG problem have been studied
in the literature (see, e.g., [2], [12], [14], [15]). In particular,
Sims [2] constructed an information-constrained control law
for the LQG problem with discounted cost. His solution
relies on the certainty equivalence principle — let the control
be the same linear function of a suitable noisy state estimate
as one would use in the perfect-information case, and then
optimize the observation channel to satisfy the information
constraint in steady state. However, the derivation in [2]
is based on several ad hoc assumptions and leaves open
the question of closed-loop stability when the information
constraint is so severe that the control must be nearly
independent of the state.

Our main contribution is an explicit construction of ra-
tionally inattentive control laws for the LQG problem from
first principles, using the convex-analytic approach we have
developed in [1]. In particular, we show the following:

1) If the controlled linear system is open-loop stable, then
the certainty-equivalent control law of the type pro-
posed by Sims [2] induces stable closed-loop dynamics
for all values of the mutual information constraint.

2) This control law is suboptimal in the regime of very
low information. In this regime, it is outperformed by
another control law that has similar structure (a linear
noisy observation channel followed by linear gain),
but both the linear gain and the noise characteristics



of the channel depend explicitly on the value of the
information constraint.

3) When the controlled system is unstable, we give a sim-
ple sufficient condition (lower bound) on the value of
information constraint to guarantee that the certainty-
equivalent control law will stabilize the system.

To keep things simple, we focus on the scalar LQG problem
and leave the general vector case for future work.

The remainder of the paper is structured as follows.
Section II gives a concise summary of the results of our
earlier paper [1]. The LQG problem with mutual information
constraint is then introduced in Section III. Section IV
contains our main result (Theorem 2) and discusses its
consequences. The proof of Theorem 2 is given in Section V,
followed by concluding remarks in Section VI. Background
material on the Gaussian distortion-rate function, which is
needed in the proof, is given in the Appendix.

II. PRELIMINARIES AND BACKGROUND

To keep the presentation self-contained, we give a brief
summary of the results of our earlier paper [1].

A. Some definitions and notation

All spaces are assumed to be standard Borel (i.e., iso-
morphic to a Borel subset of a complete separable metric
space), and will be equipped with their Borel σ-algebras. If
X is such a space, then B(X) will denote its Borel σ-algebra,
and P (X) will denote the space of all probability measures
on (X,B(X)). We use bilinear form notation for expectations:

〈µ, f 〉,
∫
X

f (x)µ(dx), ∀ f ∈ L1(µ).

A Markov or (stochastic) kernel between two spaces X and
Y is a mapping K (·|·) : B(Y)×X→ [0,1] such that K (·|x) ∈
P (Y) for all x ∈X and x 7→ K (B |x) is measurable for every
B ∈ B(Y). The space of all such Markov kernels will be
denoted by M (Y|X). Markov kernels K ∈ M (Y|X) act on
measurable functions f :Y→R from the left as

K f (x),
∫
Y

f (y)K (dy |x), ∀x ∈X

and on probability measures µ ∈P (X) from the right as

µK (B),
∫
X

K (B |x)µ(dx), ∀B ∈B(Y).

The relative entropy (or information divergence) between any
two µ,ν ∈P (X) [4] is defined as

D(µ‖ν),


〈
µ, log

dµ

dν

〉
, if µ≺ ν

+∞, otherwise

Given any probability measure µ ∈ P (X) and any Markov
kernel K ∈ M (Y|X), we can define a probability measure
µ⊗K on the product space (X×Y,B(X)⊗B(Y)) via its action
on the rectangles A×B , A ∈B(X),B ∈B(Y):

(µ⊗K )(A×B),
∫

A
K (B |x)µ(dx).

Note that µ⊗ K (X× B) = µK (B) for all B ∈ B(X). The
Shannon mutual information [4] in the pair (µ,K ) is

I (µ,K ),D(µ⊗K ‖µ⊗µK ),

where, for any µ ∈ P (X) and ν ∈ P (Y), µ⊗ν denotes the
product measure defined via (µ⊗ν)(A×B),µ(A)ν(B) for all
A ∈B(X),B ∈B(Y). In this paper, we use natural logarithms,
so mutual information is measured in nats.

We will also need some notions from rate-distortion the-
ory [19], which is a branch of information theory that deals
with optimal compression of data subject to information
constraints. Given a probability measure µ ∈ P (X) and a
measurable distortion function d :X×Y→R+, the Shannon
distortion-rate function (DRF) of µ w.r.t. d is defined as

Dµ(R), inf
K∈Iπ(R)

〈µ⊗K ,d〉,

where
Iµ(R),

{
K ∈M (Y|X) : I (µ,K ) ≤ R

}
is the set of all Markov kernels with X-valued input and Y-
valued output, such that when the input has distribution µ,
the resulting mutual information is no more than R nats.

B. System model
Consider a time-invariant controlled stochastic system

with state space X and control (or action) space U, initial
state distribution µ ∈P (X), and controlled Markov transition
kernel Q ∈ M (X|X×U). A Markov randomized stationary
(MRS) control law is specified by a Markov kernel Φ ∈
M (U|X). Given Φ, the evolution of the system is described
by the X-valued state process {X t }∞t=1 and the U-valued
control process {Ut }∞t=1. These processes are defined on a
common probability space (Ω,F ,P) and have the causal
ordering

X1,U1, . . . , X t ,Ut , . . . ,

where, P-almost surely,
• P(X1 ∈ A) =µ(A) for all A ∈B(X)
• P(Ut ∈ B |X t ,U t−1) =Φ(B |X t ) for all t = 1,2, . . . and all

B ∈B(U)
• P(X t+1 ∈ C |X t ,U t ) = Q(C |X t ,Ut ) for all t = 1,2. . . and

all C ∈B(X)
This specification ensures that, for each t , the next state
X t+1 is conditionally independent of X t−1,U t−1 given X t ,Ut

(which is the usual case of a controlled Markov process), and
that the control Ut is conditionally independent of X t−1,U t−1

given X t . In other words, at each time t the controller takes
as input only the most recent state X t . (The restriction of the
optimization domain to such memoryless control laws is not
always optimal, but it can be justified from first principles
for a wide class of control architectures [1, Sec. III].)

C. Information-constrained control problem
Given a measurable state-action cost function c : X×U→

R+, the objective is to minimize the long-term average cost

limsup
T→∞

1

T
E

[
T∑

t=1
c(X t ,Ut )

]
(1)



over all MRS control laws Φ ∈ M (U|X) satisfying the
information constraint

limsup
t→∞

I (µt ,Φ) ≤ R (2)

for a given R ≥ 0, where µt ∈ P (X) is the state distribution
at time t . When R < +∞, this constraint ensures that the
state-to-control transformation X t →Ut must factor through
a noisy observation channel with information capacity of no
more than R nats per use, i.e., any realization of the control
law must be a Markov chain

X t
Kt−−→ Zt −−→Ut ,

where the observation Zt takes values in some space Z, and
I (µt ,Kt ) ≤ R. Let Jµ(Φ) denote the value of the objective
(1) attained by a particular controller Φ, where µ=µ1 is the
initial state distribution. Thus, we seek an admissible control
law that would minimize Jµ(Φ) under the constraint (2).

D. A convex-analytic formulation

As we had shown in [1], the problem of finding an opti-
mal information-constrained control law is best approached
through the convex-analytic framework for Markov decision
processes (see [17], [22]–[25]). Any MRS control law Φ

induces a Markov kernel QΦ ∈M (X|X) via

QΦ(A|x),
∫
U

Q(A|x,u)Φ(du|x), ∀A ∈B(X).

We say that Φ is stable if:

1) There exists a probability measure πΦ ∈ P (X) which
is invariant under QΦ, i.e., πΦ =πΦQΦ.

2) The average cost JπΦ (Φ) is finite, and moreover

JπΦ (Φ) = 〈ΓΦ,c〉 =
∫
X×U

c(x,u)ΓΦ(dx,du),

where ΓΦ,πΦ⊗Φ.

Let K ⊂M (U|X) denote the space of all such stable control
laws. In the absence of any information constraint and under
mild regularity conditions (which are satisfied in the LQG
setting), it can be shown [23]–[25] that the optimal steady-
state value of the average-cost control problem is

J∗ = inf
µ∈P (X)

inf
Φ∈M (U|X)

Jµ(Φ) = inf
Φ∈K

〈ΓΦ,c〉. (3)

If Φ∗ ∈ K achieves the infimum on the rightmost side of
(3) and if the Markov kernel QΦ∗ is ergodic, then the state
distributions µt induced by Φ∗ converge weakly to πΦ∗

regardless of the initial condition µ1 =µ.
For the information-constrained problem, it is convenient

to decompose the infimum over Φ ∈K in (3) by first fixing
the candidate invariant distribution π ∈ P (X). For any π ∈
P (X), define the sets

Kπ,
{
Φ ∈K :π=πΦ

}
Iπ(R),

{
Φ ∈M (U|X) : I (π,Φ) ≤ R

}
Kπ(R),Kπ∩Iπ(R).

Then the optimal steady-state value of the information-
constrained average-cost control problem is

J∗(R), inf
π∈P (X)

inf
Φ∈Kπ(R)

〈π⊗Φ,c〉. (4)

We can summarize the results of [1] as follows:

Theorem 1. For any π ∈P (X), let

J∗π(R), inf
Φ∈Kπ(R)

〈π⊗Φ,c〉. (5)

Then

J∗π(R) = inf
Φ∈Iπ(R)

sup
h∈L1(π)

〈π⊗Φ,c +Qh −h〉 (6a)

= sup
h∈L1(π)

inf
Φ∈Iπ(R)

〈π⊗Φ,c +Qh −h〉 (6b)

Suppose the infimum in (6a)–(6b) is achieved by some Φ∗ ∈
Kπ(R), and J∗π(R) <∞. Suppose also that there exist some
h ∈ L1(π) and λ ∈R+, such that

〈π,h〉+λ= Dπ(R;c +Qh), (7)

where

Dπ(R;c +Qh), inf
Φ∈Iπ(R)

〈π⊗Φ,c +Qh〉 (8)

is the DRF of π w.r.t. the distortion function c +Qh. Then
Φ∗ achieves the infimum in (8), and

J∗π(R) = Jπ(Φ∗) =λ.

Some remarks are in order. The function h in (6a)–(6b)
plays the role of a Lagrange multiplier associated with the
constraint Φ ∈Kπ, which is what can be expected from the
theory of average-cost optimal control [17, Ch. 9].

If we let η= 〈π⊗Φ,c〉, then the function c +Qh−h−η is
the Bellman error associated with h. This object is used in
approximate dynamic programming to quantify the deviation
of a control law from optimality in terms of the error
in the Bellman equation, also known as the Average Cost
Optimality Equation (ACOE) [17], [18]. Moreover, we can
interpret (7) as an information-constrained ACOE, and the
standard ACOE can be recovered in the limit R → ∞ [1].
When a nontrivial information constraint is present (R <∞),
the optimal steady-state value J∗π(R) is the optimal value
of a single-stage (static) control problem under the same
information constraint but with the cost function related to
the Bellman error.

III. INFORMATION-CONSTRAINED LQG PROBLEM

We now formulate the scalar LQG problem in the ratio-
nal inattention regime. Consider the following linear time-
invariant stochastic system:

X t+1 = aX t +bUt +Wt , t ≥ 1 (9)

where a,b 6= 0 are the system coefficients, {X t }∞t=1 is a real-
valued state process, {Ut }∞t=1 is a real-valued control process,
and {Wt }∞t=1 is a sequence of independent and identically
distributed (i.i.d.) Gaussian random variables with mean
0 and variance σ2. The initial state X1 has some given



distribution µ. Here, X=U=R, and the controlled transition
kernel Q ∈M (X|X×U) corresponding to (9) is

Q(dy |x,u) = γ(y ; ax +bu,σ2)dy,

where

γ(y ;m,σ2) = 1p
2πσ2

exp

(
− (y −m)2

2σ2

)
is the probability density of a Gaussian distribution with
mean m and variance σ2, and dy is the Lebesgue measure.

We focus on the quadratic performance objective

limsup
T→∞

1

T
E

[
T∑

t=1
p X 2

t +qU 2
t

]
with p, q > 0. Following the formalism of Section II-D, we
seek a pair consisting of an invariant distribution π ∈ P (X)
and an MRS control law Φ ∈ M (U|X) to attain the steady-
state value (5) with c(x,u) = px2+qu2 under the information
constraint I (π,Φ) ≤ R.

IV. MAIN RESULT AND SOME IMPLICATIONS

We now state the main result of this paper, which gives
an upper bound on the information-constrained average cost
in the LQG problem of Section III:

Theorem 2. Suppose that the system (9) is open-loop sta-
ble, i.e., a2 < 1. Fix an information constraint R > 0. Let
m1 = m1(R) be the unique positive root of the information-
constrained discrete algebraic Riccati equation (IC-DARE)

p +m(a2 −1)+ (mab)2

q +mb2 (e−2R −1) = 0, (10)

and let m2 be the unique positive root of the standard DARE

p +m(a2 −1)− (mab)2

q +mb2 = 0 (11)

Define the control gains k1 = k1(R) and k2 by

ki =− mi ab

q +mi b2 (12)

and steady-state variances σ2
1 =σ2

1(R) and σ2
2 =σ2

2(R) by

σ2
i =

σ2

1− [
e−2R a2 + (1−e−2R ) (a +bki )2] . (13)

Then

J∗(R) ≤ min
(
m1σ

2,m2σ
2 + (q +m2b2)k2

2σ
2
2e−2R

)
. (14)

Also, let Φ1 and Φ2 be two MRS control laws with Gaussian
conditional densities

ϕi (u|x) = dΦi (u|x)

du
= γ(

u; (1−e−2R )ki x, (1−e−2R )e−2R kiσ
2
i

)
, (15)

and let πi = N (0,σ2
i ) for i = 1,2. Then the first term on the

right-hand side of (14) is achieved by Φ1, the second term
is achieved by Φ2, and

Φi ∈Kπi (R), i = 1,2.

Moreover, in each case the information constraint is met with
equality: I (πi ,Φi ) = R, i = 1,2.

Before we proceed with the proof of Theorem 2, we pause
to examine a few consequences. First of all, the controllers
Φ1 and Φ2 coincide and attain global optimality in both the
no-information (R = 0) and the perfect-information (R =+∞)
cases. Indeed, when R = 0, the quadratic IC-DARE (10)
reduces to the linear Lyapunov equation [20]

p +m(a2 −1) = 0,

so the first term on the right-hand side of (14) is

m1(0)σ2 = pσ2

1−a2 .

On the other hand, using Eqs. (11) and (12), we can show
that the second term is equal to the first term, so from (14)

J∗(0) ≤ pσ2

1−a2 . (16)

Since this is the minimal average cost in the open-loop case,
we have equality in (16). Also, the controllers Φ1 and Φ2

are both realized by the deterministic open-loop law Ut ≡ 0
for all t , as expected. Finally, the steady-state variance is

σ2
1(0) =σ2

2(0) = σ2

1−a2 ,

and π1 =π2 = N (0,σ2/(1−a2)), which is the unique invariant
distribution of the system (9) with Ut ≡ 0 for all t (recall the
stability assumption a2 < 1).

On the other hand, in the limit R →∞ the IC-DARE (10)
reduces to the usual DARE (11). Hence, m1(∞) = m2, and
both terms on the right-hand side of (14) are equal to m2σ

2.
This gives

J∗(∞) ≤ m2σ
2. (17)

Since this is the minimal average cost attainable in the scalar
LQG control problem with perfect information, we have
equality in (17), as expected. The controllers Φ1 and Φ2 are
again both deterministic and have the usual linear structure
Ut = k2X t for all t . The steady-state variance is

σ2
1(∞) =σ2

2(∞) = σ2

1− (a +bk2)2 ,

which is the steady-state variance induced by the optimal
controller in the standard LQG problem.

In the presence of a nontrivial information constraint (0 <
R <∞), the two control laws Φ1 and Φ2 are no longer the
same. However, they are both stochastic and have the form

Ut = ki

[
(1−e−2R )X t +e−R

√
1−e−2RV (i )

t

]
, (18)

where {V (i )
t }∞t=1 is a sequence of i.i.d. N (0,σ2

i ) random
variables independent of {Wt }∞t=1 and X1. The corresponding
closed-loop system is

X t+1 =
[
a + (

1−e−2R)
bki

]
X t +Z (i )

t , (19)

where {Z (i )
t }∞t=1 is a sequence of i.i.d. Gaussian random



variables with mean 0 and variance

σ̄2
i = e−2R (1−e−2R ) (bki )2σ2

i +σ2.

Theorem 2 implies that, for each i = 1,2, this system is stable
and has the invariant distribution πi = N (0,σ2

i ). Moreover,
this invariant distribution is unique, and the closed-loop
transition kernels KΦi , i = 1,2, are ergodic. We also note
that the two controllers in (18) can be realized as a cascade
consisting of an additive white Gaussian noise (AWGN)
channel and a linear gain:

Ut = ki X̂ (i )
t

X̂ (i )
t = (1−e−2R )X t +e−R

√
1−e−2RV (i )

t .

We can view the stochastic mapping from X t to X̂ (i )
t as

a noisy sensor or state observation channel that adds just
enough noise to the state to satisfy the information constraint
in the steady state, while introducing a minimum amount of
distortion. The difference between the two control laws Φ1

and Φ2 is due to the fact that, for 0 < R < ∞, k1(R) 6= k2

and σ2
1(R) 6= σ2

2(R). Note also that the deterministic (linear
gain) part of Φ2 is exactly the same as in the standard LQG
problem with perfect information, with or without noise. In
particular, the gain k2 is independent of the information
constraint R. Hence, Φ2 as a certainty-equivalent control
law which treats the output X̂ (2)

t of the AWGN channel as
the best representation of the state X t given the information
constraint. A control law with this structure was proposed by
Sims [2] on heuristic grounds for the information-constrained
LQG problem with discounted cost. On the other hand, for
Φ1 both the noise variance σ2

1 in the channel X t → X̂ (1)
t

and the gain k1 depend on the information constraint R.
Numerical simulations show that Φ1 attains smaller steady-
state cost for all sufficiently small values of R (see Figure 1),
whereas Φ2 outperforms Φ1 when R is large. As shown
above, the two controllers are exactly the same (and optimal)
in the no-information (R → 0) and perfect-information (R →
∞) regimes.

Finally, we comment on the unstable case (a2 > 1). A sim-
ple sufficient condition for the existence of an information-
constrained controller that results in a stable closed-loop
system is

R > 1

2
log

a2 − (a +bk2)2

1− (a +bk2)2 , (20)

where k2 is the control gain defined in (12). Indeed, if
R satisfies (20), then the steady-state variance σ2

2 is well-
defined, so the closed-loop system (19) with i = 2 is stable.

V. PROOF OF THEOREM 2

We want to show that, for i = 1,2, the pair (hi ,λi ) with

h1(x) = m1x2, λ1 = m1σ
2

h2(x) = m2x2, λ2 = m2σ
2 + (q +m2b2)k2

2σ
2
2e−2R

solves the information-constrained ACOE (7) for πi , i.e.,

〈πi ,hi 〉+λi = Dπi (R;c +Qhi ), (21)
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Fig. 1. Comparison of Φ1 and Φ2 at low information rates (top: steady-
state values, bottom: difference of steady-state values of Φ2 and Φ1). System
parameters: a = 0.995,b = 1,σ2 = 1, cost parameters: p = q = 1.

and that the MRS control law Φi achieves the value of the
distortion-rate function in (21) and belongs to the set Kπi (R).
Then the desired results will follow from Theorem 1. The
proof is based on three lemmas (numbered 1–3 below), where
Lemmas 1 and 2 show that the quantities listed in the state-
ment of Theorem 2 are well-defined (thus ensuring closed-
loop stability), while Lemma 3 shows that the proposed
control laws satisfy the conditions of Theorem 1.

A. Existence, uniqueness, and closed-loop stability

In preparation for the proof, we first demonstrate that m1 =
m1(R) indeed exists and is positive, and that the steady-state
variances σ2

1 and σ2
2 are finite and positive. This will imply

that the closed-loop system (19) is stable and ergodic with
the unique invariant distribution πi .

Lemma 1. For all nonzero a,b and all p, q,R > 0, Eq. (10)
has a unique positive root m1 = m1(R).

Remark 1. Uniqueness and positivity of m2 follow from
well-known results on the standard LQG problem.

Proof. Consider the function

F (m), p +ma2 + (mab)2

q +mb2 (e−2R −1).

We have

F ′(m) = a2 + (ab)2(e−2R −1)
(
2q +mb2

)
m

(q +mb2)2

F ′′(m) = 2a2b6(e−2R −1)

(q +mb2)3



whence it follows that F is strictly increasing and concave
for m >−q/b2. Therefore, the fixed-point equation F (m) =
m has a unique positive root m1(R). (See the proof of
Proposition 4.4.1 in [21] for a similar argument.)

Lemma 2. For all a,b 6= 0 with a2 < 1 and p, q,R > 0,

e−2R a2 + (1−e−2R )(a +bki )2 ∈ (0,1), i = 1,2. (22)

Consequently, the steady-state variance σ2
i = σ2

i (R) defined
in (13) is finite and positive.

Proof. We write

e−2R a2 + (1−e−2R )(a +bki )2

= e−2R a2 + (1−e−2R )

[
a

(
1− mi b2

q +mi b2

)]2

≤ a2,

where the second step uses (12) and the last step follows
from the fact that q > 0 and mi > 0 (cf. Lemma 1). By the
assumption of open-loop stability (a2 < 1), we get (22).

B. A quadratic ansatz for the relative value function

Let h(x) = mx2 for an arbitrary m > 0. Then

Qh(x,u) =
∫
X

h(y)Q(dy |x,u)

= m(ax +bu)2 +mσ2,

and

c(x,u)+Qh(x,u)

= mσ2 +px2 +qu2 +m(ax +bu)2

= mσ2 + (q +mb2)u2 +2mabux + (p +ma2)x2.

Let us complete the squares by letting x̃ =− mab

q +mb2 x:

c(x,u)+Qh(x,u)

= mσ2 + (q +mb2) (u − x̃)2 +
(

p +ma2 − m2(ab)2

q +mb2

)
x2.

Therefore, for any π ∈P (X) and any Φ ∈M (U|X), such that
π and πΦ have finite second moments, we have

〈π⊗Φ,c +Qh −h〉

= mσ2 +
(

p +m(a2 −1)− (mab)2

q +mb2

)∫
X

x2π(dx)

+ (q +mb2)
∫
X×U

(u − x̃)2π(dx)Φ(du|x).

C. Reduction to a static Gaussian rate-distortion problem

Now we consider the Gaussian case π = N (0,υ) with an
arbitrary υ> 0. Then for any Φ ∈M (U|X) we have

〈π⊗Φ,c +Qh −h〉 = mσ2 +
(

p +m(a2 −1)− (mab)2

q +mb2

)
υ

+ (q +mb2)
∫
X×U

(u − x̃)2π(dx)Φ(du|x).

We need to minimize the above over all Φ ∈Iπ(R).

If X is a random variable with distribution π = N (0,υ),
then its scaled version

X̃ =− mab

q +mb2 X ≡ k X (23)

has distribution π̃ = N (0, υ̃) with υ̃ = k2υ. Since the trans-
formation X 7→ X̃ is one-to-one and mutual information is
invariant under one-to-one transformations [4], we can write

Dπ(R;c +Qh)−〈π,h〉
= inf
Φ∈Iπ(R)

〈π⊗Φ,c +Qh −h〉 (24)

= mσ2 +
(

p +m(a2 −1)− (mab)2

q +mb2

)
υ

+ (q +mb2) inf
Φ̃∈Iπ̃(R)

∫
X×U

(u − x̃)2π̃(dx̃)Φ̃(du|x̃). (25)

We recognize the infimum in (25) as the DRF for the Gaus-
sian distribution π̃ w.r.t. the squared-error distortion d(x̃,u) =
(x̃ −u)2. (For the reader’s convenience, the Appendix con-
tains a summary of standard results on the Gaussian DRF.)
Exploiting this fact, we can write

Dπ(R;c +Qh)−〈π,h〉

= mσ2 +
(

p +m(a2 −1)− (mab)2

q +mb2

)
υ+ (q +mb2)υ̃e−2R

= mσ2 +
(

p +m(a2 −1)+ (mab)2

q +mb2 (e−2R −1)

)
υ (26)

= mσ2 +
(

p +m(a2 −1)− (mab)2

q +mb2

)
υ

+ (q +mb2)k2υe−2R , (27)

where Eqs. (26) and (27) are obtained by collecting appro-
priate terms and using the definition of k from (23). We can
now state the following result:

Lemma 3. Let πi = N (0,σ2
i ), i = 1,2. Then the pair (hi ,λi )

solves the information-constrained ACOE (21). Moreover, for
each i the controller Φi defined in (15) achieves the DRF in
(21) and belongs to the set Kπi (R).

Proof. If we let m = m1, then the second term in (26) is
identically zero for any υ. Similarly, if we let m = m2, then
the second term in (27) is zero for any υ. In each case, the
choice υ=σ2

i gives (21).

From the results on the Gaussian DRF (see Appendix), we
know that, for a given υ> 0, the infimum in (25) is achieved
by the kernel

K ∗
i (du|x̃) = γ(

u; (1−e−2R )x̃,e−2R (1−e−2R )υ̃
)

du.

Setting υ=σ2
i for i = 1,2 and using the fact that x̃ = ki x and

υ̃= k2
i σ

2
i , we see that the infimum over Φ in (24) in each case

is achieved by the composition of the deterministic mapping

x̃ = ki x =− mi ab

q +mi b2 x (28)

with K ∗
i . It is easy to see that this composition is precisely

the stochastic control law Φi defined in (15). Since the map



(28) is one-to-one, we have

I (πi ,Φi ) = I (π̃i ,K ∗
i ) = R.

Therefore, Φi ∈Iπi (R).
It remains to show that Φi ∈ Kπi , i.e., that πi is an

invariant distribution of QΦi . This follows immediately from
the fact that QΦi is realized as

Y = (a +bki e−2R )X +bki e−R
√

1−e−2RV (i ) +W,

where V (i ) ∼ N (0,σ2
i ) and W ∼ N (0,σ2) are independent of

one another and of X [cf. (A.3)]. If X ∼πi , then the variance
of the output Y is equal to

(a +bki e−2R )2σ2
i + (bki )2e−2R (1−e−2R )σ2

i +σ2

= [
e−2R a2 + (1−e−2R ) (a +bki )2]σ2

i +σ2

=σ2
i ,

where the last line follows from (13). This completes the
proof of the lemma.

Putting together Lemmas 1–3 and using Theorem 1, we
obtain Theorem 2.

VI. CONCLUSIONS

The main contribution of this paper is a tight upper bound
on the optimal steady-state value attainable in the scalar LQG
control problem subject to a mutual information constraint.
We have shown that there are two distinct control policies
that have different performance in the presence of a nontrivial
information constraint, but reduce to optimal deterministic
control laws in the two extreme cases of no information and
perfect information. Future work will include an extension
to the vector LQG problem and a derivation of necessary
conditions on the value of the information constraint to
guarantee stabilizability.

APPENDIX

THE GAUSSIAN DISTORTION-RATE FUNCTION

Given a Borel probability measure µ on the real line,
we denote by Dµ(R) its distortion-rate function w.r.t. the
squared-error distortion d(x, x ′) = (x −x ′)2:

Dµ(R), inf
K∈M (R|R):

I (µ,K )≤R

∫
R×R

(x −x ′)2µ(dx)K (dx ′|x) (A.1)

(where the mutual information is measured in nats). Let µ=
N (0,σ2). Then we have the following [19]:

• Dµ(R) =σ2e−2R

• The optimal kernel K ∗ that achieves the infimum in
(A.1) has the form

K ∗(dx ′|x)

= γ(
x ′; (1−e−2R )x, (1−e−2R )e−2Rσ2)dx ′ (A.2)

and achieves the information constraint with equality:
I (µ,K ∗) = R.

• K ∗ can be realized as a stochastic linear system

X ′ = (1−e−2R )X +e−R
√

1−e−2RV , (A.3)

where V ∼ N (0,σ2) is independent of X .
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