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Abstract— Two-player single-controller zero-sum stochastic
games are a class of zero-sum dynamic games with Markovian
state dynamics, where only one player controls the state tran-
sitions. Design of optimal strategies for such games with large
state and action spaces relies on computationally demanding
dynamic programming. Linear programming can also be used,
but the number of constraints equals the number of states. This
paper presents a class of simple suboptimal strategies that can
be constructed by playing a certain repeated static game where
neither player observes the specific mixed strategies used by
the other player at each round. We quantify the suboptimality
of the resulting strategies and show that, when the two players
honestly follow the prescribed protocol, each player can exploit
the regularity or predictability of the moves of the other player,
and thus speed up convergence to the minimax value.

I. INTRODUCTION

Game theory studies strategic interactions between rational
agents. Stochastic games [1], [2] are a special type of
dynamic games with a global state variable. At each stage
of the game, the players choose their actions, and each
receives a payoff that depends on the current state and on
the chosen actions. Then, the game moves to a new random
state, whose distribution depends on the previous state and
on the most recent actions of the players. Herein, we are
interested in two-player single-controller zero-sum stochastic
games, where only one agent controls the state transitions,
and the loss of one agent is the reward of the other and
vice versa. We focus on single-controller games because of
their natural connection with so-called regret minimization
methods for sequential (or online) learning [3] (we explain
this connection in more detail below). Existing work [1], [4]–
[6] has mainly focused on finding and computing equilibria
for such games. However, in practice, the associated com-
putational burden severely limits the range of applications
(e.g., the computational complexity of dynamic programming
scales quadratically with the number of states; in linear
programming formulations, the number of constraints equals
the number of states). In this paper, we construct a class
of suboptimal yet simple strategies, such that the expected
payoff of the two players is close to the minimax value.
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Single-controller stochastic games are closely related to
regret minimization [3] in online Markov decision processes
(MDPs) [7]–[15]. Just like its offline counterpart, the online
MDP problem involves a controlled Markov chain, but the
state-action cost function varies arbitrarily with time, and
the agent finds out the current cost function only after
having taken an action. An online MDP can be viewed
as a two-player single-controller stochastic game, where
the agent controls the state transitions, while an oblivious
(i.e., open-loop) environment chooses the cost functions.
In such a situation, the agent’s objective is to minimize
regret relative to the best stationary Markov policy that
could have been selected with full knowledge of the cost
function sequence over the horizon of interest. Earlier work
[8], [9], [12], [14] has concentrated on developing algorithms
that achieve sublinear regret when the environment is acting
arbitrarily and likely sub-optimally. In contrast, we consider
the environment to be a rational opponent who is adaptive
to the agent’s actions and has a specific goal: maximize his
long-term average reward.

In the setting of zero-sum matrix games (without a state),
the von Neumann minimax theorem guarantees the existence
of a minimax equilibrium in mixed strategies, such that
each player can minimize his maximum losses. There is
an intimate connection between the minimax value of a
zero-sum game and regret minimization: if two players in
a repeated zero-sum matrix game (i.e., a stochastic game
without a state) respond to each other’s moves using regret
minimization algorithms, then each player’s average payoff
converges to the minimax value, their average strategies
constitute an approximate minimax equilibrium, and the rate
of convergence is determined by the players’ regret [3].
Moreover, recent work by Daskalakis et al. [16] and by
Rakhlin and Sridharan [17] has shown that, if the two players
are honest and do not deviate from the prescribed protocol,
then their average payoff converges to the minimax value
at fast rates. To the best of our knowledge, the possibility
of using regret minimization algorithms to approach the
horizon-dependent minimax value of dynamic games has not
been previously investigated in the literature.

In this paper, we look at regret minimization and stochastic
games from a different and novel prospective. We are not
interested in minimizing the regret against the best stationary
strategy; instead, we shift our focus toward using regret min-
imization strategies to derive simple suboptimal strategies
for single-controller stochastic games. To the best of our
knowledge, this topic has not been the subject of previous
work. Note that in the case of zero-sum matrix games, the



minimax equilibrium is a static object referring to the one-
stage game, contrary to a T -round stochastic game, where the
minimax equilibrium is a dynamic object. In this paper, we
show how to approximate the dynamic minimax equilibrium
by simple stationary strategies using regret minimization.
As a first step, we reduce the single-controller stochastic
game to an online linear optimization problem. This enables
us to use regret minimization strategies to generate a pair
of stationary policies and prove that the average payoff
converges to the average minimax payoff at fast rates. As
a result, we are able to approximately solve two-player
stochastic games in a simple and efficient way. Moreover,
we precisely quantify the degree of sub-optimality of the
proposed policies by characterizing the rate at which the
associated payoff converges to the game’s minimax value.
Finally, inspired by the work of Rakhlin and Sridharan [17],
we illustrate how we can achieve faster convergence rates
when both players incorporate appropriate prediction models
of their opponents’ strategies into their decision loops.

Notation. The simplex of all probability distributions on a
finite set Y is denoted by P(Y); the set of all Markov (or
row-stochastic) matrices P = [P (z|y)]y∈Y,z∈Z with rows and
columns indexed by the elements of Y and Z respectively is
denoted by M(Z|Y). The elements of M(Z|Y) transform
probability distributions on Y into probability distributions
on Z by matrix multiplication: µ 7→ µP . Any µ ∈ P(Y)
and P ∈ M(Z|Y) can be combined to form a probability
distribution µ⊗ P ∈ P(Y× Z): µ⊗ P (y, z) , µ(y)P (z|y).
The L1 distance between µ, ν ∈ P(Y) is

‖µ− ν‖1 ,
∑
y∈Y

|µ(y)− ν(y)| ≡ sup
f : ‖f‖∞≤1

|〈µ, f〉 − 〈ν, f〉| ,

where the supremum is over all real-valued functions on Y
with absolute value bounded by 1, and we use the linear
functional notation for expectations: 〈µ, f〉 = Eµ[f ] =∑
y∈Y µ(y)f(y). The Kullback–Leibler divergence (or rel-

ative entropy) between µ and ν is denoted by D(µ‖ν).

II. PROBLEM FORMULATION

We consider a single-controller stochastic game, i.e., only
one player controls the state transitions [5]. The finite state
space is denoted by X, and there are two finite action spaces
for the two players, U1 and U2. The cost function is c :
X × U1 × U2 → [0, 1]. Player 1’s closed-loop behavioral
strategy is denoted by the tuple γ = (γ1, . . .), where γt :
Xt×Ut−1

1 ×Ut−1
2 → P(U1), and P1,t ≡ γt(xt, ut−1

1 , ut−1
2 ) is

his mixed strategy at time t given the history (xt, ut−1
1 , ut−1

2 )
of past and present states and past actions by both players.
Similarly, Player 2 also has a closed-loop behavioral strategy
denoted by the tuple δ = (δ1, . . .) with δt : Xt × Ut−1

1 ×
Ut−1

2 → P(U2), and his mixed strategy at time t is given
by P2,t = δt(x

t, ut−1
1 , ut−1

2 ). Since Player 1 alone controls
the state transitions, the controlled transition kernel is given
by K(y|x, u1), which specifies the probability of moving to
state y given the current state x and Player 1’s action u1.
The game protocol is the following:

X1 = x
for t = 1, 2, . . .

Players 1 and 2 observe the state Xt

Player 1 chooses P1,t and draws U1,t ∼ P1,t;
Player 2 chooses P2,t and draws U2,t ∼ P2,t;
U1,t and U2,t are revealed to both players
Player 1 incurs cost c(Xt, U1,t, U2,t),
Player 2 incurs cost −c(Xt, U1,t, U2,t)
The state is updated to Xt+1 ∼ K(·|Xt, U1,t)

end for

Given the initial state x and the strategy pair (γ, δ),
we will denote by Eγ,δ

x [·] the expectation with respect to
the process law of the game trajectory {(Xt, U1,t, U2,t)}∞t=1

generated by the above protocol.
A basic result in the theory of stochastic games is that,

for every initial state x, the game has a value given by

V∞(x) = inf
γ

sup
δ

lim sup
T→∞

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]
.

This corresponds to an infinite-horizon stochastic game with
optimal stationary strategies for both players [4], [5]. On the
other hand, we can fix a time horizon T , and consider the
corresponding value

VT (x) = inf
γ

sup
δ

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]
. (1)

In this case, instead, the optimal strategies of both players
are non-stationary. Our goal is to explore whether there exist
simple regret-minimization strategies for the two players,
such that, if both players honestly follow stationary policies
derived from the prescribed strategies, their average payoffs
will approach the average minimax payoff at a fast rate.

III. AN AUXILIARY STATIC GAME AND ITS VALUE

Our eventual goal is to prove that the minimax value
VT (x) of the dynamic game described in Section II can
be tightly bounded from above by the minimax value of a
certain static game, and that there exist stationary strategies
for both players that can achieve this bound. We begin by
describing this auxiliary static (one-shot) game, which we
henceforth denote by G1.

We will denote the move spaces of Players 1 and 2 by S
and T , respectively, where S is the state-action polytope

S ,
{
µ ∈ P(X× U1) :

∑
x,u1

K(y|x, u1)µ(x, u1)

=
∑
u1

µ(y, u1),∀y ∈ X
}
, (2)

associated to the Markov kernel K [18], while T is the
probability simplex P(U2). Every element in S can be
decomposed in the form

µ(x, u1) = πP (x)⊗ P (u1|x), x ∈ X, u1 ∈ U1

for some randomized Markov policy P ∈ M(U1|X), where
πP is the invariant distribution of the Markov kernel

KP (x′|x) ,
∑
u1∈U1

K(x′|x, u1)P (u1|x).



Conversely, any element µ ∈ S induces a Markov policy

Pµ(u1|x) ,
µ(x, u1)∑
v∈U1

µ(x, v)
. (3)

Moreover, S is a closed convex subset of P(X×U1), whose
extreme points are deterministic Markov policies. It plays a
prominent role in the so-called convex-analytic approach to
MDPs [19]. Specifically, consider an infinite-horizon MDP
with state space X, action space U1, and one-step cost f : X×
U1 → R. Then it can be shown that, under mild ergodicity
conditions [19]–[21], the optimal long-term average cost

vf∞(x) , inf
P∈M(U1|X)

lim sup
T→∞

1

T
EPx

[
T∑
t=1

f(Xt, Ut)

]
is equal to the value of the static optimization problem

min
µ
〈µ, f〉 subject to µ ∈ S (4)

regardless of the initial condition X1 = x. Thus, any
µ∗ ∈ S that attains the optimum in (4) induces an optimal
deterministic policy P ∗ = Pµ∗ via (3).

We now return to our static game G1 with the payoff

G(µ, ν) , 〈µ⊗ ν, c〉, ∀µ ∈ S, ν ∈ T .

Since both S and T are compact convex subsets of finite-
dimensional vector spaces, and the payoff G(µ, ν) is affine
in both µ and ν, the game G1 has a minimax value

G∗ = inf
µ∈S

sup
ν∈T
〈µ⊗ ν, c〉 = sup

ν∈T
inf
µ∈S
〈µ⊗ ν, c〉.

In view of our discussion of the convex-analytic approach to
MDPs, we can interpret this minimax value as follows. For
each ν ∈ T , consider an MDP with state space X, action
space U1, and one-step cost

fν(x, u1) , 〈ν, c(x, u1, ·)〉 ≡
∑
u2∈U2

ν(u2)c(x, u1, u2).

Then infµ∈S〈µ ⊗ ν, c〉 = vν∞(x) ≡ vfν∞ (x) for any initial
state X1 = x, and therefore G∗ = supν∈T v

ν
∞(x).

A. Approaching G∗ using regret minimization

We now show that Player 1 and Player 2 can approach the
minimax value G∗ in repeated play of G1, where we do not
require the players to know the overall payoff structure of
the game, i.e., the cost function c. The repeated game takes
place as follows. At each time step t ∈ {1, . . . , T}, Player 1
selects an occupation measure µt ∈ S, while Player 2 selects
a mixed strategy νt ∈ T . The pair (µt, νt) determines the
functions ft : X× U1 → [0, 1] and gt : U2 → [0, 1] via

ft(x, u1) ,
∑
u2∈U2

νt(u2)c(x, u1, u2),

gt(u2) ,
∑
x∈X

∑
u1∈U1

µt(x, u1)c(x, u1, u2).

Player 1 then observes ft and incurs the cost 〈µt, ft〉, while
Player 2 observes gt and incurs the cost −〈νt, gt〉. Under
this observation structure, Player 1 may know ft, but not the

mixed strategy νt of Player 2, the overall cost structure c, or
the size of U2; similarly, even though Player 2 knows gt, he
may not know µt, c, or the size of U1. However, from the
definitions of ft and gt, it follows that

〈µt, ft〉 = 〈νt, gt〉 = 〈µt ⊗ νt, c〉 = G(µt, νt), (5)

which means that both players have enough knowledge to
compute their one-step costs.

Once the problem is reduced to an online linear optimiza-
tion, we let both players adopt regret minimization strategies,
and look at their online learning regrets:

T∑
t=1

〈µt, ft〉 − inf
µ∈S

T∑
t=1

〈µ, ft〉 ≤ R1(f1:T ) (6)

T∑
t=1

(−〈νt, gt〉)− inf
ν∈T

T∑
t=1

(−〈ν, gt〉) ≤ R2(g1:T ). (7)

The term “regret” is motivated by the observation that the
quantities on the left-hand sides of Eqs. (6) and (7) are the
differences between the cumulative cost incurred by each
player during game play and the cumulative cost of the
best stationary strategy in hindsight. Here, we assume, for
instance, that Player 1 produces a sequence µ1, . . . , µT ∈ S
in response to the observed expected payoffs f1, . . . , fT , and
his regret is upper-bounded by R1(f1, . . . , fT ) given Player
2’s choice of actions. Similarly, Player 2 produces a sequence
ν1, . . . , νT ∈ T in response to the observed expected payoffs
g1, . . . , gT , and his regret is denoted by R2(g1, . . . , gT )
given Player 1’s actions. Note that there is no Markov chain
involved, and the strategies of both players depend only on
the previous moves of their opponents. This online linear
optimization problem refers to the online learning (steady-
state) component of the game. Since this is a standard online
learning problem, we know that there exist numerous regret
minimization strategies for both players such that R1 and R2

are sublinear in the time horizon T [3].
We denote the averages of the sequences of the two

players’ actions by µ̄T = 1
T

∑T
t=1 µt and ν̄T = 1

T

∑T
t=1 νt.

Since the sets S and T are convex, µ̄T ∈ S and ν̄T ∈ T .
The following proposition will be exploited in the proofs of
the next section:

Proposition 1. Suppose both players adopt arbitrary regret
minimization strategies in repeated play of G1. Let {µt}Tt=1

and {νt}Tt=1 denote the sequences of the players’ choices,
and let {ft}Tt=1 and {gt}Tt=1 denote the resulting sequences
of observed payoff functions. Then

sup
ν∈T

G(µ̄T , ν)−G∗ ≤
R1(f1:T ) +R2(g1:T )

T
. (8)

Proof. Adding up the regrets of the two players and using
Eq. (5), we have

sup
ν∈T

1

T

T∑
t=1

〈µt ⊗ ν, c〉 − inf
µ∈S

1

T

T∑
t=1

〈µ⊗ νt, c〉

≤ R1(f1:T ) +R2(g1:T )

T
. (9)



Using Eq. (5) and linearity, we have

sup
ν∈T

1

T

T∑
t=1

〈µt ⊗ ν, c〉 = sup
ν∈T

G(µ̄T , ν)

and

inf
µ∈S

1

T

T∑
t=1

〈µ⊗ νt, c〉 = inf
µ∈S

G(µ, ν̄T )

≤ sup
ν∈T

inf
µ∈S

G(µ, ν)

= inf
µ∈S

sup
ν∈T

G(µ, ν),

where the last step is by the von Neumann minimax theorem.
Using these facts in (9), we get (8).

B. Incorporating prediction models

When both players use regret minimization algorithms
to approach G∗, one can get performance guarantees (i.e.,
upper bounds on R1 and R2) that are uniform in all possible
sequences {ft} and {gt}, including the worst-case scenario.
However, these regret bounds are often conservative. More
optimistic results are desirable when both players have some
side information about each other’s strategies. For example,
if they know their opponent’s choices exhibit some form
of “regularity,” they may incorporate this information into
their decision loops. This idea of regret minimization with
predictable sequences was introduced recently by Rakhlin
and Sridharan [17], [22], who have shown that prediction
models can be used by two players in a finite zero-sum matrix
game to converge to the minimax equilibrium at fast rates.

In this section, we follow the lead of [17] and introduce
prediction models of the players’ strategies. Formally, we
assume that, at each time t, Player 1 and Player 2 construct
history-dependent estimates of each other’s next move by
f̂t = Mt(f1, . . . , ft−1) and ĝt = Nt(g1, . . . , gt−1). Thus, f̂t
is Player 1’s estimate (or prediction) of ft based on the past
revealed realizations f1, . . . , ft−1, and similar considerations
apply to Player 2. We refer to {Mt}Tt=1 and {Nt}Tt=1 as the
prediction models of Player 1 and Player 2, respectively.

At each time t, Player 1 selects

µt = arg min
µ∈S

{〈
µ,

1

η1

t−1∑
s=1

fs +
1

η1
f̂t

〉
+ Φ(µ)

}
, (10)

where η1 > 0 is a tunable learning rate of Player 1,
and where Φ(µ) is the relative entropy regularization term
D(µ‖µ◦). Here, µ◦ ∈ P(X × U1) is the uniform measure
over all state-action pairs: ν◦(·, ·) = 1/|X × U1|. Similarly,
at time t, Player 2 selects

νt = arg min
ν∈T

{〈
ν,

1

η2

t−1∑
s=1

gs +
1

η2
ĝt

〉
+ Ψ(ν)

}
, (11)

where η2 > 0 is Player 2’s learning rate, and where Ψ(ν) is
the relative entropy regularization term D(ν‖ν◦) with ν◦ ∈
T denoting the uniform measure over the action space U2.

We can now state the regret bound for the above algo-
rithms (proofs are omitted due to space limitations):

Theorem 1. For the repeated play of G1, the proposed
algorithm (10) for Player 1 attains the regret

R1(f1:T ) ≤
T∑
t=1

1

η1
‖ft − f̂t‖2∞ + η1 log |X× U1|. (12)

Similarly, the algorithm (11) for Player 2 attains the regret

R2(g1:T ) ≤
T∑
t=1

1

η2
‖gt − ĝt‖2∞ + η2 log |U2| (13)

If we cannot assume the two players follow the algorithms
honestly, each player can set his learning rate conservatively.
In particular, since ‖ft‖∞ ≤ 1 for all t, we can assume
without loss of generality that ‖f̂t‖∞ ≤ 1 as well. This
assumption gives the usual worst-case regret bound

R1(f1:T ) ≤ 4T

η1
+ η1 log |X1 × U|,

which can be optimized w.r.t. the learning rate η1 to yield
the usual O(

√
T log |X1 × U|) regret bound. However, if the

players are honest and do cooperate, the learning rates η1

and η2 can be tuned adaptively using prior knowledge. For
instance, if Player 1 has prior knowledge about the term∑T
t=1 ‖ft − f̂t‖∞, he can optimize R1 by choosing η1 =√∑T
t=1

‖ft−f̂t‖2∞
log |X×U1| . This leads to the regret bound

R1(f1:T ) ≤ 2

√√√√log |X× U1|
T∑
t=1

‖ft − f̂t‖2∞.

For example, if Player 1’s prediction of ft is simply the
previously revealed ft−1, i.e., f̂t = Mt(f1, . . . , ft−1) =
ft−1, then the bound becomes

R1(f1:T ) ≤ 2

√√√√log |X× U1|
T∑
t=1

‖ft − ft−1‖2∞,

which is known in the literature as a path-length bound
[23], [24]. In situations where Player 2 gradually changes
his moves, i.e., when the previous move of Player 2 is a
good proxy for his next move, such bounds can be tighter
than the worst-case pessimistic O(

√
T ) bound.

If both players adopt the algorithms of Eqs. (10) and (11),
then R1 and R2 diminish as the prediction models become
more accurate. As we show in the next section, smaller R1

and R2 make the average payoffs of the players converge
faster to the minimax payoff in dynamic stochastic games.

IV. REGRET MINIMIZATION IN STOCHASTIC GAMES

In the preceding section, we have analyzed a certain
static (one-shot) game G1 and showed that the two players
can approach its minimax payoff using regret-minimization
algorithms in repeated play of G1. This naturally leads to
the following question: How can we relate the static game
G1 to the original dynamic game that has multiple rounds?
In this section, we will answer this question by relating the
minimax value G∗ to VT and the quantity supν∈T G(µ̄T , ν)



to the actual realized payoff of the dynamic game. We will
then propose certain stationary strategies for the two players
in a single-controller zero-sum stochastic games and quantify
the gap between the resulting expected payoff and VT .

A. Stationary strategies for finite-horizon stochastic games

We first relate the static game G1 to the dynamic game
with the value given by Eq. (1):

Lemma 1. Suppose both players adopt regret minimization
strategies in repeated play of G1. Let {µt}Tt=1 and {ft}Tt=1

be the resulting sequences of the players’ choices. If Player 1
uses the average occupation measure µ̄T in G1, then, regard-
less of Player 2’s choice, Player 1’s payoff approaches the
minimax payoff of the T -step finite-horizon stochastic game
starting at any initial state x. Specifically, let R1(f1:T ) and
R2(g1:T ) be the online learning regrets of the corresponding
regret minimization algorithms used in repeated play of G1.
Then, there exists some constant C, such that

sup
ν∈T

G(µ̄T , ν) ≤ VT (x) +
C

T
+
R1(f1:T ) +R2(g1:T )

T
.

Proof. Let ∆iid denote the subset of behavioral strategies
of Player 2, where the actions U2,t are drawn i.i.d. from
some fixed distribution in T , regardless of the state and
of Player 1’s actions. Thus, there is an obvious one-to-one
correspondence between ∆iid and T , so we will use the
notation Eγ,ν

x [·] for δ ∈ ∆iid induced by ν ∈ T . Then

VT (x) = inf
γ

sup
δ

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]

≥ inf
γ

sup
δ∈∆iid

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]

= inf
γ

sup
ν∈T

1

T
Eγ,ν
x

[
T∑
t=1

fν(Xt, U1,t)

]

≥ sup
ν∈T

inf
γ

1

T
Eγ,ν
x

[
T∑
t=1

fν(Xt, U1,t)

]
,

where
fν(x, u1) ,

∑
u2∈U2

ν(u2)c(x, u1, u2).

For a fixed choice of ν ∈ T , Player 1 faces a T -step MDP
with one-step state-action cost fν . Let us denote the optimal
payoff of that MDP starting from initial state x ∈ X by
vνT (x) = infγ(1/T )Eγ,ν

x

[∑T
t=1 fν(Xt, U1,t)

]
and denote

vν∞(x) , limT→∞ vνT (x). When ν is a Dirac measure
centered at some u2 ∈ U2, we will write vu2

T and vu2
∞ instead.

By [2, Prop. 5.21], T‖vνT − vν∞‖∞ is uniformly bounded:
for each ν ∈ T , there exists a constant C(ν), such that

‖vνT − vν∞‖∞ ≤
C(ν)

T
.

Since the functional ν 7→ ‖vνT − vν∞‖∞ is convex, we have

sup
ν∈T
‖vνT − vν∞‖∞ = max

u2∈U2

‖vu2

T − v
u2
∞ ‖∞ ≤

C

T
,

where C , maxu2∈U2
C(u2) is some finite constant. More-

over, from the convex-analytic approach to MDP’s [25], we
know that vν∞(x) = infµ∈S〈µ, fν〉 = infµ∈S〈µ⊗ ν, c〉.

Consequently,

VT (x) ≥ sup
ν∈T

inf
γ

1

T
Eγ,ν
x

[
T∑
t=1

fν(Xt, U1,t)

]
= sup
ν∈T

vνT (x)

≥ sup
ν∈T

{
inf
µ∈S
〈µ⊗ ν, c〉 − C

T

}
= inf
µ∈S

sup
ν∈T
〈µ⊗ ν, c〉 − C

T
,

where the last step is by the von Neumann minimax theorem.
Combining this with (8), we complete the proof.

Next we relate the quantity supν∈T 〈µ̄T ⊗ ν, c〉 to the
payoff of several different dynamic games. We start with
the repeated play of G1. Recall that Player 1 uses a regret-
minimization algorithm to produce a sequence of T occu-
pation measures on the space of state-action pairs X × U1,
and computes the average of these measures µ̄T . Player 2
also adopts a regret minimization algorithm to generate a
sequence of {νt}Tt=1 and computes the average ν̄T . Now
the two players can use these objects to construct their
Markov randomized stationary strategies γ = (γ, γ, . . .) and
δ = (δ, δ, . . .), where

γ(x) = Pµ̄T (·|x) and δ(x) = ν̄T . (14)

Here, Pµ̄T is the Markov policy induced by the occupation
measure µ̄T . Note, by the way, that Player 2’s strategy
ignores the state variable. Now, we consider a T -round
stochastic game, throughout which Player 1 uses the sta-
tionary strategy γ and Player 2 uses δ.

We impose the following uniform mixing condition [8],
[9], [14]: There exists a finite constant τ > 0 such that for
all P ∈M(U1|X) and µ1, µ2 ∈ P(X),

‖µ1KP − µ2KP ‖1 ≤ e−1/τ‖µ1 − µ2‖1. (15)

In other words, the collection of all state transition laws
induced by all Markov policies P of Player 1 is uniformly
mixing. Here we assume, without loss of generality, that
τ ≥ 1. This uniform mixing property guarantees that every
Markov policy P has a unique invariant state distribution
πP ∈ P(X), i.e., πP = πPK(·|P ).

Theorem 2. Assume the uniform mixing condition is satisfied
by the controlled transition kernel K. When both players
follow stationary strategies γ and δ derived according to
(14) from their regret minimization strategies in G1, we have

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]
− VT (x)

≤ R1(f1:T ) +R2(g1:T )

T
+
C + 2(τ + 1)

T
.

Proof. Let πt be the marginal state distribution at time t,
and let π̄ denote the (unique) invariant distribution of the



Markov policy Pµ̄T . Then µ̄T = π̄ ⊗ Pµ̄T . Denoting by µ̃t
the state-action distribution πt ⊗ Pµ̄T , we have

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]
=

1

T

T∑
t=1

〈µ̃t ⊗ ν̄T , c〉

≤ 1

T

T∑
t=1

〈µ̄T ⊗ ν̄T , c〉+
1

T

T∑
t=1

‖πt − π̄‖1

≤ 〈µ̄T ⊗ ν̄T , c〉+
1

T

T∑
t=1

2e−t/τ

≤ sup
ν∈T
〈µ̄T ⊗ ν, c〉+

2(τ + 1)

T

≤ VT (x) +
R1(f1:T ) +R2(g1:T ) + C + 2(τ + 1)

T
,

where the second inequality is by the uniform mixing con-
dition, and the last inequality by Lemma 1.

This result quantifies the sub-optimality of the stationary
policies δ and γ for the T -round stochastic game. When
the two players use these near-optimal stationary strategies,
the gap between the actual payoff and the average minimax
payoff VT (x) decays to zero as T →∞. In fact, the policy
δ is near-minimax for Player 1:

Corollary 1. Under the same assumptions as in Theorem 2,

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]

− sup
δ

1

T
Eγ,δ
x

[
T∑
t=1

c(Xt, U1,t, U2,t)

]

≤ R1(f1:T ) +R2(g1:T )

T
+
C + 2(τ + 1)

T
.

V. CONCLUSION

In this paper, we designed simple and efficient strategies
for two-player single-controller zero-sum stochastic games
and quantified the gap between their expected payoff and
the dynamic equilibrium value of the game. In particular, we
developed stationary policies based on regret minimization
strategies and quantified their rate of convergence to the
minimax value of an auxiliary static game. This suggests that
we can achieve sublinear convergence to the minimax payoff
of the dynamic game if the associated regret minimization
strategies exhibit sublinear regret. Finally, we investigated the
case where both players of the game exploit side information
regarding the strategies of their opponents and devised appro-
priate algorithms that achieve more optimistic convergence
rates to the minimax payoff.

The main limitation of our results is that we restrict Player
2 to open-loop strategies, whereas even in the case when
only Player 1 controls the state transitions, both players
observe the state of the game and can use it to guide their
actions. Imposing this restriction on Player 2 has allowed
us to introduce an auxiliary static game, which was used
to design the strategies for the two players in the original

dynamic game. Removing this limitation is a major direction
for future research.
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decision processes with changing cost sequences,” ICML, 2014.

[15] P. Guan, M. Raginsky, and R. Willett, “From minimax value to low-
regret algorithms for online Markov decision processes,” In Proceed-
ings of American Control Conference, 2014.

[16] C. Daskalakis, A. Deckelbaum, and A. Kim, “Near-optimal no-regret
algorithms for zero-sum games,” In Proceedings of the 22nd Annual
ACM-SIAM symposium on Discrete Algorithms, pp. 235–254, 2011.

[17] A. Rakhlin and K. Sridharan, “Optimization, learning, and games with
predictable sequences,” Adv. Neural Inform. Processing Systems, 2013.

[18] M. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley, 1994.

[19] V. S. Borkar, “Convex analytic methods in Markov decision pro-
cesses,” in Handbook of Markov decision processes. Kluwer Aca-
demic Publishers, 2002.

[20] A. S. Manne, “Linear programming and sequential decisions,” Man-
agement Science, vol. 6, no. 3, pp. 259–267, 1960.

[21] S. Meyn, Control techniques for complex networks. Cambrdige Univ.
Press, 2008.

[22] A. Rakhlin and K. Sridharan, “Online learning with predictable
sequences,” In proceedings of the 26th Annual Conference on Learning
Theory (COLT), 2013.

[23] C. K. Chiang, T. Yang, C. J. Lee, M. Mahdavi, C. J. Lu, R. Jin, and
S. Zhu, “Online optimization with gradual variations,” In proceedings
of the 25nd Annual Conference on Learning Theory (COLT), 2012.

[24] A. Rakhlin, K. Sridharan, and A. Tewari, “Online learning: Stochastic,
constrained, and smoothed adversaries,” Adv. Neural Inform. Process-
ing Systems, 2011.

[25] V. S. Borkar, “A convex analytic approach to Markov decision pro-
cesses,” Probab. Th. Rel. Fields, vol. 78, pp. 583–602, 1988.


