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Abstract— We consider an online (real-time) control problem
that involves an agent performing a discrete-time random walk
over a finite state space. The agent’s action at each time step
is to specify the probability distribution for the next state
given the current state. Following the set-up of Todorov (2007,
2009), the state-action cost at each time step is a sum of a
nonnegative state cost and a control cost given by the Kullback–
Leibler divergence between the agent’s next-state distribution
and that determined by some fixed passive dynamics. The online
aspect of the problem is due to the fact that the state cost
functions are generated by a dynamic environment, and the
agent learns the current state cost only after having selected
the corresponding action. We give an explicit construction of
an efficient strategy that has small regret (i.e., the difference
between the total state-action cost incurred causally and the
smallest cost attainable using noncausal knowledge of the state
costs) under mild regularity conditions on the passive dynamics.
We demonstrate the performance of our proposed strategy on
a simulated target tracking problem.

I. INTRODUCTION

Markov decision processes (MDPs) [1], [2] are a pop-
ular framework for sequential decision-making in a ran-
dom dynamic environment. At each time step, an agent
observes the state of the system of interest and chooses
an action. The system then transitions stochastically to its
next state, with the transition probability determined by the
current state and the action taken. There is a (possibly time-
varying) cost associated with each admissible state-action
pair, and a policy (feedback law) for mapping states to
actions is selected to minimize average cost. In the basic
MDP framework, it is assumed that the cost functions and
the transition probabilities are known in advance, the policy
is designed “offline” (e.g., using dynamic programming), and
the relevant optimality criterion is forward-looking, taking
into account the effect of past actions on future costs.

Another framework for sequential decision-making, dating
back to the seminal work of Hannan [3] and now widely used
in the machine learning community [4], models the effects of
the environment by an arbitrarily varying sequence of cost
functions, where the cost function pertaining to each time
step is revealed to the agent only after the corresponding
action has been taken. There is no state, and the goal of the
agent is to minimize regret, i.e., the difference between the
total cost incurred using causally available information and
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the total cost of the best single action that could have been
chosen in hindsight. In contrast with MDPs, the regret-based
optimality criterion is necessarily myopic and backward-
looking, since the cost incurred at each time step depends
only on the action taken at that time step, so past actions
have no effect on future costs.

Recent work by Even-Dar et al. [5] and Yu et al. [6]
combines these two frameworks into what may be described
as online MDPs with finite state and action spaces. Like in
the traditional MDP setting, the agent observes the current
state and chooses an action, and the system transitions to
the next state according to a fixed and known Markov law.
However, like in the online framework, the one-step cost
functions form an arbitrarily varying sequence, and the cost
function corresponding to each time step is revealed to the
agent after the action has been taken. The objective of the
agent is to minimize regret relative to the best stationary
Markov policy that could have been selected with full
knowledge of the cost function sequence over the horizon
of interest. The time-varying cost functions may represent
unmodeled aspects of the environment or collective (and
possibly irrational) behavior of any other agents that may
be present; the regret minimization viewpoint then ensures
that the agent’s online policy is robust against these effects.

Our contributions. The set-up considered in [5], [6] is moti-
vated by problems in machine learning, where the actions are
the main object of interest, and the state merely represents
memory effects present in the system. In this paper, we take
a more control-oriented view: the emphasis is on steering
the system along a desirable state trajectory through actions
selected according to a state feedback law. Following the
formulation proposed recently by Todorov [7], [8], we allow
the agent to modulate the state transitions directly, so that
actions (resp., state feedback laws) correspond to probability
distributions (resp., Markov kernels) on the underlying state
space. As in [7], [8], the one-step cost is a sum of two terms:
the state cost, which measures how “desirable” each state is,
and the control cost, which measures the deviation of the
transition probabilities specified by the chosen action from
some fixed default or passive dynamics.

In the online version of this problem, the state costs form
an arbitrarily varying sequence, and the agent learns the
state cost for each time step only after having selected the
transition law to determine the next state. For any given
value of the horizon, the regret is computed with respect to
the best stationary Markov policy (state feedback law) that
could have been chosen in hindsight. Our main contribution
is an explicit construction of a strategy for the agent, such
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that the regret relative to any uniformly ergodic class of
stationary Markov policies grows sublinearly as a function
of the horizon. The only regularity conditions needed for this
result to hold are (a) uniform boundedness of the state costs
(the agent need not know the bound, only that it exists);
and (b) ergodicity of the passive dynamics. Moreover, our
strategy is computationally efficient: the time is divided into
phases of increasing length, and during each phase the agent
applies a stationary Markov policy optimized for the average
of the state costs revealed during all of the preceding phases.

Our construction is inspired by the approach of Yu et
al. [6], but there are significant differences:

1) While in [6] both the state and the action spaces are
finite, we only assume this for the state space. Our
action space is the simplex of probability distributions
on the state space. (It is possible to extend our ap-
proach to more general, e.g., compact, state spaces, but
additional regularity conditions will be needed. This
extension will be the focus of our future work.)

2) Yu et al. [6] assume that the underlying MDP is
unichain [1, Sec. 8.3] and satisfies a certain uniform er-
godicity condition (a similar assumption is also needed
by Even-Dar et al. [5]). Since we are working with a
continuous action space, we need to explicitly prove
uniform ergodicity of any stationary policy that could
conceivably be used by our strategy.

3) In [6], the policy computation at the beginning of
each phase requires solving a linear program and then
adding a carefully tuned random perturbation to the
solution. By contrast, because of the specific structure
of the state-action costs we use, all policy computations
reduce to solving finite-dimensional eigenvalue prob-
lems, without any need for additional randomization.

Notation. The underlying finite state space is denoted by
X. The set of all Markov (or stochastic) matrices over X
is denoted by M(X), the set of all probability distributions
over X by P(X), the set of all functions f : X → R by
C(X), and the cone of all nonnegative functions f : X →
R+ by C+(X). We represent the elements of P(X) by row
vectors, and the elements of C(X) by column vectors. The
total variation (or L1) distance between µ, ν ∈ P(X) is ‖µ−
ν‖1 ,

∑
x∈X |µ(x)−ν(x)|. The Kullback–Leibler divergence

(or relative entropy) between µ and ν is

D(µ‖ν) ,

{∑
x∈X µ(x) log µ(x)

ν(x) , if supp(µ) ⊆ supp(ν)

+∞, otherwise

(here and elsewhere, we work with natural logarithms). The
span seminorm of f ∈ C(X) is ‖f‖s , maxx∈X f(x) −
minx∈X f(x), where ‖f‖s = 0 iff f ≡ c for some constant
c ∈ R. Also, ‖f‖∞ , maxx∈X |f(x)| is the sup norm.

Any Markov matrix P ∈ M(X) acts on probability
distributions from the right and on functions from the left:

µP (y) =
∑
x∈X

µ(x)P (x, y), Pf(x) =
∑
y∈X

P (x, y)f(y).

We say that P is unichain [9, Ch. 3] if the corresponding
Markov chain has a single recurrent class of states (plus

a possibly empty transient class). This is equivalent to P
having a unique invariant distribution πP (i.e., πPP = πP )
[10, Sec. 4.2]. We will denote the set of all such Markov
matrices over X by M1(X). Given ρ ∈ [0, 1], we say that P
is ρ-contractive if ‖µP − νP‖1 ≤ ρ‖µ− ν‖1,∀µ, ν ∈ P(X)
(in fact, every P ∈ M(X) is 1-contractive). We will denote
the set of ρ-contractive Markov matrices by Mρ

1(X). It is
easy to show that, for every 0 ≤ ρ < 1, Mρ

1(X) ⊂M1(X).
The Dobrushin ergodicity coefficient of P ∈M(X) is

α(P ) ,
1

2
max
x,x′∈X

‖P (x, ·)− P (x′, ·)‖1,

and P is α(P )-contractive [10]. Finally, for any P, P ′ ∈
M(X) we let ‖P − P ′‖∞ , maxx∈X ‖P (x, ·)− P ′(x, ·)‖1.

II. PROBLEM STATEMENT AND MAIN RESULT

The model. We start by specifying our online MDP model.
Given the finite state space X, let F be a fixed subset of
C+(X), and let x1 ∈ X be a fixed initial state. Consider
an agent (A) performing a controlled random walk on X
in response to a dynamic environment (E). The interaction
between A and E proceeds as follows:

X1 = x1
for t = 1, 2, . . .

A selects Pt ∈M(X) and draws Xt+1 ∼ Pt(Xt, ·)
E selects ft ∈ F and announces it to A

end for

At each t ≥ 1, A selects the transition probabilities
Pt(x, y) = Pr{Xt+1 = y|Xt = x} based on f t−1 =
(f1, . . . , ft−1), and incurs the state cost ft(Xt). Following
Todorov [7], [8], we use the Kullback–Leiblier control cost,
D(Pt(Xt, ·)‖P ∗(Xt, ·)), where P ∗ ∈ M(X) is a fixed
Markov matrix that models the passive (or reference) dy-
namics. Thus, the total cost at time t is

ct(Xt, Pt) = ft(Xt) +D(Pt(Xt, ·)‖P ∗(Xt, ·)),

and the goal is to minimize a suitable notion of regret. We
assume that the environment E is oblivious (or nonadaptive),
i.e., each ft may depend on f t−1, but not on Xt.

Strategies and regret. A strategy for the agent is a sequence
γ = {γt}∞t=1 of mappings γt : F t−1 → M(X), so that
Pt = γt(f

t−1). The cumulative cost of γ after T steps is

CT =

T∑
t=1

ct(Xt, Pt) =

T∑
t=1

ct(Xt, γt(f
t−1)).

The regret at time T is the difference between CT and the
expected cumulative cost that A could achieve in hindsight
(with full knowledge of fT ) using a stationary unichain
random walk on X. Formally, we define the regret of γ at
time T w.r.t. P ∈M1(X) by1

RT (P ) , CT − EPx1

[
T∑
t=1

ct(Xt, P )

]
,

1To keep the notation clean, we have suppressed the dependence of the
cumulative cost CT and the regret RT on the strategy γ and on the state
costs f1, . . . , fT .
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where EPx1
[·] denotes expectation w.r.t. the Markov chain

with initial state X1 = x1 and transition matrix P . Adopting
standard terminology [4], we say that γ is Hannan-consistent
w.r.t. N ⊆M1(X) if

lim sup
T→∞

sup
P∈N

sup
f1,...,fT∈F

ERT (P )

T
≤ 0,

i.e., if the worst-case (over F) expected average regret
converges to zero uniformly over N .

The main result. We make the following two assumptions:

Assumption 1. The passive dynamics P ∗ is ergodic (i.e.,
irreducible and aperiodic).

Assumption 2. α(P ∗) < 1.

Assumption 1 ensures that P ∗ has a unique everywhere
positive invariant distribution π∗. Assumption 2 guarantees
that the convergence to π∗ is exponentially fast (so that P ∗ is
geometrically ergodic), but it also imposes a stronger type of
ergodicity, since a Markov matrix P ∈M(X) has α(P ) < 1
if and only if for any pair x, x′ ∈ X there exists at least
one y ∈ X, such that both P (x, y) and P (x′, y) are strictly
positive. We are now in a position to state our main result:

Theorem 1. Let F consist of all f ∈ C+(X) with ‖f‖∞ ≤ 1.
Under Assumptions 1 and 2, and for any ε ∈ (0, 1/3), there
exists a strategy γ, such that for any ρ ∈ [0, 1)

sup
P∈Mρ

1(X)

sup
f1,...,fT∈F

ERT (P )

T
= O(T−1/4+ε) (1)

i.e., γ is Hannan-consistent w.r.t. Mρ
1(X).

Remark 1. The constant hidden in the O(·) notation depends
only on the passive dynamics P ∗ and on the contraction rate
ρ of the comparison policies in Mρ

1(X).

III. PRELIMINARIES: MDPS WITH KL CONTROL COST

Our construction of a Hannan-consistent strategy uses
Todorov’s theory of MDPs with KL control cost [7], [8].
In this section, we give a brief overview of this theory and
present several new results that will be used in the sequel.

The standard set-up for an MDP with a finite state space X
and a compact action space U (see, e.g., [2] or [11]) involves
a family of Markov matrices Pu ∈M(X) indexed by u ∈ U.
The average cost of a stationary Markov policy w : X→ U
with initial condition X1 = x1 is given by

J(w, x1) , lim sup
T→∞

1

T
Ewx1

[
T∑
t=1

c(Xt, w(Xt))

]
, (2)

where Ewx1
[·] is the expectation w.r.t. the Markov chain X =

{Xt} with controlled transition probabilities

Pr{Xt+1 = y|Xt = x} = Pw(x)(x, y), X1 = x1

and c : X × U → R+ is the one-step state-action cost.
The construction of an optimal policy that minimizes (2) for

every initial condition x1 revolves around the average-cost
optimality equation (ACOE)

h(x) + λ = min
u∈U(x)

{c(x, u) + Puh(x)} , x ∈ X

where U(x) ⊆ U is the set of allowable actions in state x.
If a solution pair (λ, h) ∈ R+ × C(X) exists, then it can be
shown [2], [11] that the stationary policy

w∗(x) = arg min
u∈U(x)

{c(x, u) + Puh(x)}

is optimal, and its average cost is equal to λ for every x.
The function h is called the relative value function.

MDPs with KL control cost. In the set-up of [7], [8], the
action space U is the probability simplex P(X), which is
compact in the Euclidean topology, and for each u ∈ P(X)
we have Pu(x, y) , u(y), (x, y) ∈ X × X. Thus, any state
feedback law w : X→ P(X) induces the state transitions

P{Xt+1 = y|Xt = x} = Pw(x)(x, y) ≡ u(y), t ≥ 1

where u = w(x) ∈ P(X). In other words, if Xt = x, then
u = w(x) is the distribution of the next state Xt+1. Hence,
there is a one-to-one correspondence between Markov poli-
cies of this type and Markov matrices P ∈M(X).

To specify an MDP, we fix a function f ∈ C+(X) and a
Markov matrix P ∗ ∈ M(X), and define the one-step state-
action cost c : X× P(X)→ R+ ∪ {+∞} by

c(x, u) , f(x) +D(u‖P ∗(x, ·)), x ∈ X, u ∈ P(X)

where f(x) is the state cost that penalizes the “undesirabil-
ity” of x, while the KL divergence D(u‖P ∗(x, ·)) is the
control cost that penalizes deviations of u ∈ P(X) from
P ∗(x, ·). Here, P ∗ is the passive dynamics, which may be
thought of as specifying the state transition probabilities in
the absence of control. Any state feedback law perturbs these
transition probabilities, and the KL control cost ensures that
these perturbations are as small as possible.

Following common practice, we will use the shorthand
c(x, P ) for c(x, P (x, ·)). Then the average cost of a policy
P ∈M(X) starting at X1 = x1 is given by

J(P, x1) = lim sup
T→∞

1

T
EPx1

[
T∑
t=1

c(Xt, P )

]
.

Intuitively, if P has small average cost, then the induced
Markov chain X = {Xt} has small average state cost, and
its one-step state transitions stay close to those of P ∗.

The ACOE for this problem takes the form

h(x) + λ = f(x) + min
u∈P(X)

{D(u‖P ∗(x, ·)) + Euh} , (3)

and it is easy to show, using the fact that the KL divergence
is nonnegative, that the optimal policy is given by

P∗(x, y) =
P ∗(x, y)e−h(y)

Λ(x)
, (4)
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where Λ(x) = P ∗e−h(x) is a normalization factor. If we
define for every ϕ ∈ C(X) the twisted kernel [12]

P̌ϕ(x, y) ,
P ∗(x, y)e−ϕ(y)

P ∗e−ϕ(x)
,

then we can express the optimal policy (4) more succinctly as
P∗ = P̌h. Moreover, substituting (4) into (3), we get h(x) +
λ = f(x)− log Λ(x),∀x ∈ X, which implies in turn that the
exponentiated relative value function V , e−h solves the
so-called multiplicative Poisson equation (MPE) e−fP ∗V =
e−λV [12].

In the sequel, we will often need to consider
simultaneously several MDPs with different state costs
f . Thus, whenever need arises, we will indicate the
dependence on f using appropriate subscripts, as in
cf , λf , hf , Vf , etc.

Some properties of Todorov’s optimal policy. Our proof
of Theorem 1 exploits several key properties enjoyed by the
policy (4) under the assumptions of Section II. The relevant
results are stated and proved in detail in the full version of
this paper [13]; here we only state two representative ones:

Proposition 1 (Existence, uniqueness, ergodicity). Under
Assumption 1, for any state cost f ∈ C+(X) the MPE has
a strictly positive solution Vf ∈ C+(X) with the associated
strictly positive eigenvalue e−λf , and the only nonnegative
solutions of the MPE are positive multiples of Vf . Moreover,
the corresponding twisted kernel P̌hf is also irreducible and
aperiodic, and has a unique invariant distribution π̌f =
π̌f P̌f ∈ P(X).

Remark 2. This result is implicit in [7].

Proposition 2 (Steady-state optimality). For any f ∈ C+(X)
and any P ∈M1(X) define

J̄f (P ) , EπP [cf (X,P )] ≡ EπP [Jf (P,X)].

Then

J̄f (P̌hf ) = inf
P∈M1(X)

J̄f (P ).

IV. THE PROPOSED STRATEGY

Our construction of a Hannan-consistent strategy for the
problem of Section II is similar to the approach of Yu et
al. [6]. The main idea behind it is as follows. We partition the
set of time indices 1, 2, . . . into nonoverlapping contiguous
segments (phases) of increasing duration and, during each
phase, use Todorov’s optimal policy matched to the average
of the state cost functions revealed during the preceding
phases. As in [6], the phases are sufficiently long to ensure
convergence to the steady state within each phase, and yet are
sufficiently short, so that the policies used during successive
phases are reasonably close to one another.

The phases are indexed by m ∈ N, where we denote the
mth phase by Tm and its duration by τm. Given ε ∈ (0, 1/3),
we let τm = dm1/3−εe. We also define T1:m , T1∪ . . .∪Tm
(the union of phases 1 through m) and denote its duration

by τ1:m. Given a sequence {ft} of state cost functions, we
define for each m the average state costs

f̂ (m) ,
1

τm

∑
t∈Tm

ft, f̂ (1:m) ,
1

τ1:m

∑
t∈T1:m

ft

and let f̂ (0) = f̂ (1:0) = 0. Our strategy is as follows:

for m = 1, 2, . . .

solve the MPE e−f̂
(1:m−1)

P ∗e−h
(m)

= e−λ
(m)

e−h
(m)

let P (m) = P̌h(m)

for t ∈ Tm
draw Xt+1 ∼ P (m)(Xt, ·)

end for
end for

The implementation of this strategy reduces to solving a
finite-dimensional Frobenius–Perron eigenvalue (FPE) prob-
lem [10] at the beginning of each phase to obtain a Todorov-
type relative value function. The corresponding twisted
kernel (which is ergodic by virtue of Proposition 1) then
determines the stationary policy to be followed throughout
that phase. If it is infeasible to find the exact solution of the
FPE problem, one can use an iterative procedure described
in Section 2.1 of [7] which has an exponential rate of
convergence.

V. PROOF OF THEOREM 1

A. The main idea

The proof follows the same general outline as in [6] and
consists of a series of steps. First, we demonstrate that there
is no loss of generality in considering a different notion of
regret, where the cumulative cost of the strategy of interest
is compared to the steady-state cost of a fixed stationary
policy. Next, we decompose the total cost up to time T into
the contributions of the individual phases and use uniform
ergodicity of the Markov matrices P (1), P (2), . . . (which we
first prove) to approximate the total cost within each phase
by its steady-state value (i.e., when the state within the
mth phase is sampled from the unique invariant distribution
of P (m)). Once this is done, we show that this steady-
state value is not too different from what one would get
with full knowledge of all state cost functions within the
corresponding phase, i.e., if in phase m one used the next-
phase policy P (m+1) instead of P (m). We conclude the proof
by showing that the cumulative “one-phase-ahead” cost is
bounded above by the total steady-state cost of the stationary
policy optimized for the average of all state cost functions
revealed within the horizon of interest.

B. Two preliminary lemmas

The proof makes extensive use of the following two
lemmas (see the full version of this paper [13] for details):

Lemma 1 (Uniform bounds). There exist constants K0 ≥
0,K1 ≥ 0 and 0 ≤ α < 1, such that, for every f ∈ F and
every m ∈ N,

‖cf (·, P (m))‖∞ ≤ K0, ‖h(m)‖s ≤ K1, α(P (m)) ≤ α.
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Moreover, the first bound holds for any P ∈ M1(X), such
that D(P (x, ·)‖P ∗(x, ·)) < +∞ for all x ∈ X.

Lemma 2 (Policy continuity). There is a constant K2 ≥ 0,
such that

‖P (m+1) − P (m)‖∞ ≤
K2τm
τ1:m

‖π(m+1) − π(m)‖1 ≤
K2τm

(1− α)τ1:m

where π(m) is the unique invariant distribution of P (m).
Moreover, there exists a constant K3 ≥ 0, such that for every
x ∈ X and D(m)(x) , D(P (m)(x, ·)‖P ∗(x, ·)) we have

D(m)(x)−D(m+1)(x) ≤ K3τm
τ1:m

.

C. Details

Due to space limitations, we only present a brief sketch
of the main steps; the full details can be found in [13].
Step 1: Reduction to the steady-state case. For any P ∈
M1(X), we define the steady-state regret

Rss
T (P ) , CT − EπP

[
T∑
t=1

ct(X,P )

]
.

Now let us fix some ρ ∈ [0, 1) and consider an arbitrary
P ∈Mρ

1(X). Using Lemma 1, we can show that

|Rss
T (P )−RT (P )| ≤ 2K0

1− ρ
. (5)

Therefore, it suffices to show that the bound (1) holds with
ERss

T (P ) in place of ERT (P ).
Step 2: Steady-state approximation within phases. Let
M denote the number of complete phases up to time T (so
that τ1:M ≤ T < τ1:M+1); simple algebra shows that M =
O(T 3/4+ε). Then using Lemma 1 and the facts that τM+1 =
O(M1/3−ε) and all ft’s are nonnegative, we have

Rss
T (P ) ≤ Rss

τ1:M (P ) +O(T 1/4−ε). (6)

Let Cτ1:M =
∑τ1:M
t=1 ct(Xt, Pt). Applying Lemma 1, we get

ECτ1:M ≤
M∑
m=1

∑
t∈Tm

Eπ(m)ct(X,P
(m)) +

2K0M

1− α
.

Step 3: Looking one phase ahead. Next, for every 1 ≤
m ≤M , using Lemma 1 and Lemma 2, we have,∑
t∈Tm

Eπ(m)ct(X,P
(m)) ≤ τmJ̄f̂(m)(P

(m+1)) +
K4τ

2
m

τ1:m
,

where K4 = K0K2/(1− α) +K3. Therefore,

ECτ1:M ≤
M∑
m=1

τmJ̄f̂(m)(P
(m+1)) +

M∑
m=1

K4τ
2
m

τ1:m
+

2K0M

1− α
.

Step 4: Looking M phases ahead. Using backward induc-
tion and Proposition 2, we can show

M∑
m=1

τmJ̄f̂(m)(P
(m+1)) ≤

M∑
m=1

τmJ̄f̂(m)(P
(M+1)). (7)

Moreover, since
M∑
m=1

τmJ̄f̂m(P (M+1)) = inf
P∈M1(X)

EπP

[
τ1:M∑
t=1

ct(X,P )

]
,

we can bound the expected steady-state regret as

ERss
τ1:M (P ) ≤

M∑
m=1

K4τ
2
m

τ1:m
+

2K0M

1− α
. (8)

We can show that the sum on the r.h.s. of (8) is O(M) =
O(T 3/4+ε). Therefore, ERss

τ1:M (P ) = O(T 3/4+ε). Combin-
ing this with (6), we see that ERss

T (P ) = O(T 3/4+ε), which,
together with (5), gives (1). This completes the proof of
Theorem 1.

VI. SIMULATION RESULTS

In this section, we demonstrate the performance of our
proposed strategy on a simulated problem involving online
(real-time) tracking of multiple targets on a large connected
graph, which models a terrain with obstacles. The state space
is the set of all nodes of the graph. The tracking agent’s
motion is constrained by the topology of the graph, while the
targets’ motion is unconstrained and arbitrarily time-varying.
Thus, the agent has to bypass the obstacles to reach desired
locations, while the targets can go to any place in one step.

To make sure that our assumptions are satisfied, we con-
struct the passive dynamics in the form P ∗ = (1−δ)P1+δP0.
Here, P1 is a random walk that represents environmental
constraints, allowing the agent to go from a given node either
to the node’s nearest neighbors (with equal probability) or to
stay put. To ensure that the agent is sufficiently mobile, the
probability of staying put is chosen to be relatively small
compared to the probability of transitioning to any of the
neighboring nodes. Since the underlying graph is connected,
the random walk P1 is ergodic. We also add a perturbation
P0, which has a fixed column of ones (we can think of the
node indexing that column as a “home base” for the tracker),
and zeros elsewhere. This perturbation ensures that no two
rows of P ∗ are orthogonal, so α(P ∗) < 1. The “size” of the
perturbation is controlled by δ ∈ (0, 1), which is set to be
small, so the agent only has a slight chance to go back to
“home base” from any given node. Note that α(P ∗) ≤ 1−δ.

We implemented our simulation with two targets. We ran
K = 1000 independent experiments, each consisting of
T = 1000 time steps. At time t in the kth experiment, the
tracking agent is in state (location) x(k)t , the two targets are
at locations s(k)i,t , i = 1, 2, and the tracker’s action is P (k)

t .
The cumulative cost after T time steps is

C
(k)
T =

T∑
t=1

[
f
(k)
t

(
x
(k)
t

)
+D

(
P

(k)
t (x

(k)
t , ·)

∥∥∥P ∗(x(k)t , ·)
)]
,

where the state cost

f
(k)
t

(
x
(k)
t

)
= min
i=1,2

∥∥∥x(k)t − s
(k)
i,t

∥∥∥ (9)

is the Euclidean distance between the agent and the closer
of the two targets. Each experiment was initialized with
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a different starting state of the tracker. We compared the
performance of our adaptive strategy to a nonadaptive one,
in which the agent simply performs a random walk on the
graph according to the passive dynamics P ∗. The results are
reported in the two figures below.
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Fig. 1. Histogram of regret in 1000 experiments, evaluated w.r.t. the passive
dynamics at T = 1000 in each experiment. The regret of our strategy is
negative 98 percent of the time, which implies that our adaptive strategy
outperforms the passive dynamics 98 percent of the time.
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Fig. 2. Histogram of normalized state cost (9) over all experiments (total
of KT = 106 time steps). The horizontal axis corresponds to the distance
between the agent and closer of the two targets; the vertical axis corresponds
to the number of steps in which the agent is within the corresponding
distance range. We can see that, compared to the passive dynamics, the agent
implementing our adaptive strategy spends more time in close proximity to
(one of the) targets.

VII. CONCLUSION

The problem studied in this paper combines aspects of
both stochastic control and online learning. In particular,
our construction of a Hannan-consistent strategy (a concept
from the theory of online learning [4]) uses several ideas
and techniques from the theory of MDPs with average cost
criterion, including some new results concerning optimal
policies for MDPs with KL control costs [7], [8].

We have proved that, for any horizon T , our strategy
achieves sublinear O(T 3/4) regret relative to any uniformly

ergodic class of stationary policies, which is similar to the
results of Yu et al. [6] for online MDPs with finite state
and action spaces. However, while our strategy (like that
of [6]) is computationally efficient, we believe that the
O(T 3/4) scaling of regret with T is suboptimal. Indeed,
in the case when both the state and the action spaces are
finite, Even-Dar et al. [5] present a strategy that achieves a
much better O(

√
T ) regret. Of course, the strategy of [5]

involves recomputing the policy at every time step (rather
than in phases, as is done here and in [6]), which results in
a significant loss of efficiency. An interesting open question,
which we plan to address in future work, is whether it is
possible to attain O(

√
T ) regret for online MDPs with KL

control costs.
Another promising avenue for further research has to do

with the apparent duality between our set-up and the theory
of risk-sensitive control of Markov processes [14], [15].
Indeed, the ACOE (3) can be viewed as a special case of
the Isaacs equation for a certain dynamic two-player game
with average cost criterion, in which Player 1 generates state
cost functions, while Player 2 generates distributions over
the state space (cf., e.g., [15, p. 1805]). In the set-up of our
Section II, Player 1 would correspond to the environment E,
while Player 2 would be the agent A. We plan to explore
this connection further.
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